3次元動的解析による不整形ラーメン橋台の地震時挙動の検討

The study on seismic behavior on asymmetry structure by three-dimensional dynamic analysis

北武コンサルタント株式会社	正会員	斉藤	聡彦
北武コンサルタント株式会社	正会員	渡辺	忠朋
財団法人鉄道総合技術研究所	正会員	谷村	幸裕
財団法人鉄道総合技術研究所	正会員	黒川	浩嗣

1.はじめに

鉄道高架橋は,主に立体ラーメン構造が用いられてい るが,現状の鉄道高架橋の耐震設計では2次元モデルを 用いた動的解析が一般的に行われている.しかし,道路 交差部などにおいて用いられている斜角ラーメン橋台な ど不整形な形状を有した構造物では,3次元的な挙動を 無視できない場合も多いと考えられる.そこで,本検討 では,このような不整形なラーメン構造物に対して,2 次元モデルと3次元モデルを用いて時刻歴動的解析を行 い,解析モデルの違いが応答値に与える影響について検 討を行った.

2. 検討概要

2.1 検討対象構造物

本検討で検討対象とした構造物は,実在構造物をイメ ージし,駅部にある 70 度の斜角ラーメン橋台とした. 図 2.1 に斜角ラーメン橋台の一般図を示す.斜角ラーメ ン橋台は,起点方に桁長 13.6m の RCT 桁,終点方に 7.46m の RC スラブ桁を支持し,さらに駅部であるため ホーム 2 面を支持している.材料は,コンクリートが設 計 基準強度 f ck=27N/mm²,鉄筋が降伏強度 fsy=345N/mm²を用いた.また,柱の配筋を表 2.1 に示す. 2.2 解析モデル

解析は,2次元骨組みモデルと3次元骨組みモデルを 用いて行った.柱梁接合部は剛域とし,上層梁の軸線位 置は両モデルとも全上層梁の図心軸の平均位置とした. また,3次元モデルの上層梁に囲まれている部分にはス ラブがあるため,十分な剛性を有していると仮定し,剛 な筋交いでモデル化した.図2.2に斜角ラーメン橋台の 3次元モデルを示す.なお,節点番号は2次元と3次元 モデルで共通とした.

表 2.1 斜角ラーメン橋台柱配筋

	C1					
柱位置	柱1	柱 2	柱 3	柱 4		
略図	↓ L 方向\		C 方			
L 方向 引張鉄筋	D32-9	D32-9	D32-9 D32-5	D32-9 D32-5		
C 方向 引張鉄筋	D32-9	D32-9 D32-3	D32-9 D32-3	D32-9		
帯鉄筋	D19-2 組 ctc100	D19-2 組 ctc100	D19-1 組 D22-1 組 ctc100	D19-1 組 D22-1 組 ctc100		
	C2					
柱位置	柱 5	柱 6	柱 7	柱 8		
略図						
L 方向 引張鉄筋	D32-7	D32-7	D32-9 D32-2	D32-9 D32-2		
C 方向 引張鉄筋	D32-9	D32-9 D32-2	D32-9	D32-9		
帯鉄筋	D19-2 組 ctc100	D19-2 組 ctc100	D19-2 組 ctc100	D19-2 組 ctc100		

単位:略図と帯鉄筋間隔 mm , 引張鉄筋は鉄筋径 - 本数

2.3 部材のモデル化

本検討では,モデルの違いによる影響を把握するため に,柱部材のみ鉄筋の降伏や部材の損傷による非線形を 考慮し,他の部材は線形とした.柱部材に関しては,す べて正方形断面として各種断面諸元を求めることとし, C1 ラーメン側の柱は1200×1200mmの正方形断面とした. また,上層梁の圧縮突縁の有効幅は,中間点までの幅と して初期剛性を算出した.柱部材の非線形は曲げモーメ ント - 部材角関係(以下,M- モデル)により表現し, M- モデルの骨格曲線は,鉄道構造物等設計標準同解説 (耐震設計)(以下,耐震標準)¹⁾に従い,図2.3に示 すテトラリニア型の骨格曲線²⁾を用いた.

2.4 地盤のモデル化

地盤種別は G3 地盤とし,液状化は起こらないものとして検討した.地盤のモデル化は,耐震標準および鉄道構造物等設計標準同解説(基礎土構造)³⁾に従い地盤ばねを設定し,線形とした.

3.解析方法

3.1 解析方法

解析は,直接積分法を用いた時刻歴動的解析とした. 直接積分法は,Newmark 法(=0.25)とし,積分時間

図 2.2 斜角ラーメン橋台の3次元モデル

間隔は 0.001 秒とした.また,減衰はひずみエネルギー 比例型とし,減衰定数は 0.05 とした. 3.2 解析ケース

表 3.1 に本検討で実施した解析ケースを示す.2 次元 モデルは,解析ケースを選択した上で,L 方向,C 方向 の解析を行った.3 次元モデルについては,各構造物に ついてL方向,C方向の2ケースを実施した. 3.3 入力地震波形

時刻歴動的解析には,耐震標準で示されている弾性加速度スペクトル(L2 地震動スペクトル)に適合する 波形を基盤波とした G3 地盤の地表面設計地震動を,L (線路)方向,C(線路直角)方向に入力した.図 3.1 に使用した地震波形を示す.解析は,地震波の8秒から 20秒の12秒間で実施した.

Mc:曲げひび割れ発生時の曲げモーメント My:降伏時の曲げモーメント Mm:最大曲げモーメント

図 2.3 骨格モデルと復元力特性

4.解析結果

端部 4 節点(節点 1, 14, 51, 57)に着目し,応答変 位の比較を行った.図 4.1 に節点 1, 51の応答変位の時 刻歴を,表4.1 に 4 節点の最大応答変位を示す.また, 図 4.2 にこれらの節点がある柱の M- 関係を示す.最 大応答変位に関して,節点 1, 14 では,L,C 両方向と も3次元モデルの変位の方が2次元モデルの変位より大 きくなった.逆に,節点 51,57 では両方向とも2次元 モデルの変位の方が大きくなった.

2次元モデルと3次元モデルの結果の差が大きかった L 方向の結果に着目すると,柱間隔の違いによる影響が 要因として考えられる.節点51,57があるL1ラーメン は柱間隔が狭いため,2次元モデルにおける構造物の剛 性が,3次元モデルの構造物全体の剛性より小さくなり, その結果2次元モデルの変位が大きくなったと考えられ る.

図 4.3 端部 4 節点の平面変位軌跡(L方向)

図 4.4 端部 4 節点の平面変位軌跡(C 方向)

表 4.2 節点 1 の変位

	入力波 L 方向		入力波 C 方向	
	変位 L 方向	変位 C 方向	変位 L 方向	変位 C 方向
変位量(mm)	-220.9	36.4	30.5	-158.0
回転による 変位量(mm)	-23.2	17.7	13.9	-10.7
回転による 変位の割合	11%	49%	46%	7%

図 4.3, 4.4 に 3 次元モデルにおける端部 4 節点の平 面変位の軌跡を示す.各節点について,入力波の方向に 関わらず,回転していることが確認された.節点1は両 方向において回転が大きく,L方向の入力波に対してC 方向の変位はL方向の変位の16%,C方向の入力波に対 してL方向の変位はC方向の19%発生している.これ は節点1と隣接する節点21に配置した質量が他の質点 に比べ大きいため回転が大きくなっていると考えられる. 節点 51 は L 方向の入力波において回転が大きく発生し ているが,これは柱間隔の狭いL1 ラーメンの剛性が小 さいためと考えられる.これらの回転に対して,平行移 動による変位と回転による変位の割合について簡易に検 討した.平行移動による変位量は端部4節点の変位量の 平均値とし,回転変位量は各節点の変位量から平均値を 差し引いた値とした.回転が大きかった節点1に関して は,表4.2に示すように,変位の方向と回転による変位 の方向が同一となり,回転による変位が変位量に占める 割合が入力波の方向で1割程度,直行方向では4割程度 となり,回転による影響が大きいことが分かる.

5.まとめ

本検討では,構造物の形状と解析モデルの違いによる 地震時の挙動に対する影響を把握するため,斜角ラーメ ン橋台を対象に,2次元モデルと3次元モデルを用いて 時刻歴動的解析を行い,応答変位および平面変位の軌跡 について検討を行った.その結果,本解析条件において は,以下のことが確認できた.

- 不整形なラーメン構造物の挙動は、2次元モデルと 3次元モデルでは一致しなかった。
- 入力波と直交する方向の変位が発生し,構造物が回転していることを確認した。
- 不整形の程度によっては,構造物の回転により発生 する変位量の影響が大きいため,3次元モデルを用 いた検討の必要性があると考えられる.

参考文献

- 1) (財)鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説 - 耐震設計,丸善,1999.
- 渡邉忠朋,谷村幸裕,瀧口将志,佐藤勉:鉄筋コンク リート部材の損傷状況を考慮した変形性能算定手法, 土木学会論文集,No.683/V-52,pp.31-45,2001.
- (財)鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説-基礎構造物・抗土圧構造物,丸善,2000.