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1. Introduction 

Special bridges are those curved, skew and long-span bridges 
that require special considerations in their analysis; design and 
construction1), 2). Typically, complicated nonlinear time-history 
analyses are involved in their design, which by itself is a challenge to 
bridge structural engineers, due to a lack of knowledge about how to 
design earthquake response modification systems for these special 
bridges, hence it is difficult to develop standardized design 
procedures and specification provisions. To address this need, this 
study seeks to characterize a cost-effective control system for the 
seismic protection of targeted bridges from destructive earthquake 
ground motions and provide an additional mechanism to meet 
multiple performance objectives, particularly in the presence of 
severe earthquakes. The difficulties that will be confronted in 
seismic analysis of the isolated bridge will contain how to determine 
the precise moving trajectories and how to obtain the correct stress 
conditions of the isolator concerned, so there is an urgent need to 
investigate bi-directional interaction of bearings in order to 
understand the behaviour and evaluate the efficacy of the structural 
control concept. This study objective is to characterize the effects of 
biaxial interaction on the response of the isolated bridge structures 
subjected to bi-directional excitations by comparing the system 
response with and without interaction, and to investigate the 
influence of bridge dynamic characteristics in both directions on the 
seismic isolation effectiveness for earthquake design.  

The effect of bi-directional seismic excitation is essential for 
analysis and design of seismically isolated structures3) ∼ 5), since the 
bi-directional motion is coupled and that two independent 
unidirectional models could not accurately describe the bi-directional 
behavior. The displacement in one direction affects the shear force in 
both directions; the loading in one direction appears to affect the 
bearing in the orthogonal direction. Simultaneous seismic excitation 
along each horizontal axis of a bridge can substantially increase the 
maximum isolator displacement and modify the unidirectional 
properties of the isolators. In this study, a bi-directional base isolation 
strategy is proposed to effectively protect bridge structures against 
extreme earthquakes; the seismic response of lumped-mass structure 
model to bi-directional harmonic and real earthquake ground motion 
is investigated. Adequate modeling of the control devices is essential 
for the accurate prediction of the behavior of the controlled system, 
in this study; the biaxial hysteretic behavior of bearings is modeled 
using the biaxial interaction equations of Bouc-Wen model, the 
model for biaxial interaction accounts for the direction and 
magnitude of the resultant hysteretic force. 

The response of the system with bi-directional interaction is 
compared with those without interaction in order to investigate the 
effects of bi-directional interaction of restoring forces. The analysis 
varies important parameters including the isolator properties, the 
characteristics of the harmonic motion such as the excitation 
frequency, amplitude ratio and phase difference and the substructure 
dynamic characteristics. Numerical results show that the isolated 
bridge structure is significantly influenced by the interaction of 
bearing forces. So the displacement may be underestimated, which 
can be crucial from the design point of view and the acceleration of 
the superstructure may be overrated if the bidirectional interaction is 
neglected. In comparison, loading in one direction while on the 
bi-directional circular yield surface requires unloading in the other 
direction. The unidirectional model overestimates the maximum 
force in the bearing and the hysteretic energy dissipation, particularly 
in the transverse direction because of the square yield surface; so 
designs based on uncoupled inelastic springs may not accurately 
represent the forces transferred to the substructure and hysteretic 
energy dissipation. 

2. Analytical Model Formulation and Equations of Motion 

There are many cases of damage of bridges in the past 
earthquakes all over the world. Due to their structural simplicity, 
bridges are particularly vulnerable to damage and even collapse 
when subjected to earthquakes6). The fundamental period of 
vibration of a majority of bridges is in the range of 0.2 to 1.2 second7). 
In this range, the structural response is high because it is close to the 
predominant periods of earthquake-induced ground motions. A 
simple design procedure for highway bridges aims at optimum 
balance between the shear forces transmitted to the supports and 
tolerable deck displacements for isolated highway bridges using the 
inelastic response spectra approach. How the force-reduction and 
force-redistribution advantages of seismic isolation could benefit the 
design and economics of bridges. As the structure also exerts forces 
on the isolation system, the interaction between the isolation system 
and structure is essential in the analysis or the design. This 
interaction cannot be captured by analyzing the components alone. 

 

2.1 Governing equation of motion 

The bridge structures shown in Fig. 1 are modeled as a two 
lumped mass model with two translational-DOFs system. The 
general form of the equation of motion for this system with or 
without a control device is 
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where M is the mass matrix; C is the damping matrix; K is the 
stiffness matrix; Λ is the location vector for control force, Fc; U is the 
displacement vector and Γ is the influence vector. The damping 
mechanism is adapted to the viscous Rayleigh’s damping with 
damping coefficient equal to 5%. In which 
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In the above, m1 and m2 are the lumped masses of the pier and deck, 
respectively; kx1 , ky1 and kx2 , ky2 are the stiffness of the pier and 
bearing in x- and y- directions, respectively; and x1 , y1  and x2 , y2 are 
the pier and deck displacements relative to the ground, respectively. 
  
2.2 Structural system model 

In general, base isolated bridges are designed such that the 
substructure remains elastic and nonlinearities are localized at the 
isolation level. A mathematical model of a simple isolated bridge 
structure is utilized8), in which, a bridge pier-bearing-deck structure is 
modeled as two lamped masses model with two horizontal 
translational degrees of freedom (DOF) system. Based on this model, 
passive control system using lead rubber bearing is designed for 
optimal performances. Coupled lateral response with bi-directional 
interaction effects is accounted for by maintaining two translational 
DOFs; the isolator is modeled using a coupled-plasticity Bouc-Wen 
representation. This bridge model is used for a clear understanding of 
the bidirectional excitation effect on isolation system.  

 For simulation purposes, mass ratio and damping ratio are set to 
m2 /m1 = 5 and 5%, respectively, which are typical values for elevated 
highway bridges. Considering the bearing stiffness requirement of 
Japanese code in service condition, which states that an isolated bridge 
should have approximately twice the natural period of that 
non-isolated system (Japan Road Association, 1996), the pier stiffness 

kx1, ky1 are calculated representing the pier as an SDOF system with 
mass m1, the damping ratio and natural frequency of the 
corresponding system are designated as ζ1 and w1. Similarly, the 
natural period and the damping ratio of the bearing are calculated 
considering an SDOF system with parameters kx2, ky2 and m2 and the 
corresponding damping ratio ζ2 and natural frequency w2 are found. 
The damping constant cx1, cy1, cx2, cy2 are calculated based on 
Rayleigh’s damping scheme. The LRB is isotropic, implying the same 
dynamic properties in two orthogonal directions. In the numerical 
simulations, the mass of the pier is taken as 100 tons and other 
parameters are calculated accordingly.  

 
2.3 Biaxial Bouc-Wen model of isolation bearings 

In a well designed control system, the input energy due to an 
earthquake is largely dissipated in the lead rubber bearing (LRB) 
isolation system. Analytical model based on smoothed plasticity, 
Bouc-Wen is used to characterize the hysteretic behavior of LRB 
isolation device. The LRB restoring forces Fx and Fy in two 
directions can be modeled by biaxial interaction model as follow:  
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where, zx and zy are an evolutionary shape variable, internal state, 
bounded by the values ± 1; and account for the directional/ biaxial 
interaction of hysteretic forces. The horizontal nonlinear restoring 
force is expressed as the sum of three forces acting in parallel given 
in equation (3), in which, k0 and c0 are the horizontal stiffness and 
viscous damping coefficient of the rubber composite of the bearing. 
α = k0 /ke is the post-yield and pre-yield stiffness ratio; Fyeild

 is the 
yield force from both the lead plug and the rubber stiffness. The 
properties of the LRB are ke initial elastic shear stiffness and k0 

post-yield shear stiffness, α = 0.02. The model for biaxial interaction 
of the resultant hysteretic forces is given as first order differential 
equation9) in general form as follow: 

uzzzuzuz &&&& )(||||)]sgn([ 2 TTAY −+−= ηβγ             (4)  

In which, A,η , γ and β are dimensionless quantities that control the 
shape of the Bouc-Wen model hysteresis loop, the values of A=1, 
η=2, γ = β = 0.5 are used in this study. Y is the yield displacement. 
The tangent stiffness matrix is 
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3. Numerical Simulations and Discussion 

The analysis of isolated bridge structure with LRB isolation 
system is considered. A view of the lumped mass model of the 
isolated bridge is provided in Fig. 1. The dynamic response is 
computed for harmonic and real earthquake excitations. Isolation 
bearings and supplemental damping devices can be effective 
techniques for controlling the forces and deformations transferred 
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Fig. 1 Bridge model: (a) Two-lamped mass model of bridge pier 
bearing deck system; (b) Isolation device mathematical model. 
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from a bridge superstructure to the substructure. Hysteretic energy 
dissipation in the isolation bearings, with careful design, can limit 
bearing deformations and overall displacements to acceptable levels. 
The effects of the bidirectional interaction of the bearing forces are 
investigated under the variation of important system parameters that 
include the pier flexibility, input excitation dynamic characteristics 
and the LRB isolation parameters. 

 
3.1 Response to harmonic base acceleration excitation 

 Response of bridge system to different harmonic frequencies 
gives considerable insight into the system dynamic characteristics, 
which may be useful in interpreting the response to other types of 
excitation. The harmonic ground accelerations considered in two 
orthogonal directions are expressed as 

)( sin tAx xxg ω=&& ,   )( sin φω += tAy yyg&&                    (6) 

The interaction between the restoring forces in two orthogonal 
horizontal directions is duly considered in the response analysis. Fig. 2 
shows the LRB dynamic characteristics subjected to bi-directional 
excitation with different frequency content ( xy ωω / = 0.5), 1 Hz 
sinusoidal excitation in x-direction. Due to the coupled behavior of the 
isolator response, the contribution of plastic force in the x-direction 
varies due to motion demands in the perpendicular y-direction. The 
unidirectional model also overestimates the hysteretic energy 
dissipation, particularly in the transverse direction. The coupled model 
shows considerable interaction effects in hysteresis loops. The 
unidirectional model overestimates the maximum force in the bearing. 
The force trajectory for the uncoupled model, approaches 
bi-directional square yield surface, is different in the details compared 
to the biaxial interaction model, approaches bi-directional circular 
yield surface. For harmonic excitation, the peak response is calculated 
for wide range of input excitation dynamic characteristics including 

amplitude, frequency ratios and phase difference of x- and y-directions. 
Fig. 3 shows the effect of amplitude ratio (Ay/Ax) on the LRB 
restoring force, the direction with minor amplitude of excitation is 
significantly affected, the independent unidirectional model over 
predict the maximum force in the bearing by more 20% for both 
directions, this value grows up quickly with amplitude ratio, while 
resultant force over estimated by more than 10% and reaches 20 %. 
Fig. 4 shows input excitation phase difference effect on LRB restoring 
force, the interaction effect get maximum value of 35% reduction of 
restoring force in y-direction for phase lag of half input excitation 
frequency, while approaches minimum value of 15% when the phase 
lag is 1.5 input excitation frequency. The interaction effect has 
reduction value of 20% for identical frequency content of 
bi-directional excitation due to amplification of system response 
simultaneously; this effect decrease rapidly with frequency ratio, with 
the variation of the transverse excitation frequency, the biaxial 
interaction effect is amplified near the system dominant frequencies, 
as shown in Fig 5. The shape factor of the pier section could 
significantly affect the efficiency of the isolation system in both 
directions, where the interaction effect reaches about 30% for stiffness 
ratio (ky1/kx1) of 1.5, moreover, the effect decrease with increase of the 
pier rigidity, as shown in Fig. 6. As the substructure becomes more 
flexible, the bearing deformation decreases and the maximum 
displacement increases because of reduced hysteretic energy 
dissipation in the bearing. This study demonstrates that the designer 
must consider the input excitation spectral characteristics and the 
trade-off between bearing and substructure deformation. Designs 
based on uncoupled inelastic springs may not accurately represent the 
forces transferred to the substructure and hysteretic energy dissipation.  
 
3.2 Response to real earthquake base excitation 

In this section, the seismic response of the isolated bridge model 

(a)  

(b)  
Fig. 2 LRB characteristic under 1 Hz sinusoidal x-direction 

excitation ( xy ωω / = 0.5): (a) without, (b) with biaxial interaction  

 
Fig. 3 Input excitation amplitude effect on LRB restoring force 

 
Fig. 4 Input excitation phase lag effect on LRB restoring force 
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is investigated under JR Takatori earthquake excitations. Both 
unidirectional and bidirectional response history analysis is performed 
considering bridge system, the peak LRB restoring force of this 
earthquake ground motion is calculated and given in Table 1, for 
three cases, the same wave N-S or E-W component is used in both 
direction, that clarify the amplitude and frequency content effect on 
biaxial interaction 13.2 and 6.99%, respectively. The third case, the 
two different components of the earthquake are used for two 
directions, the interaction effects is about 4.15% for resultant restoring 
force, due to phase lag, amplitude and frequency content difference of 
the earthquake components.   
 
Table 1 LRB restoring force under JR Takatori earthquake motion 

Input Excitation 
Without 

interaction 
With 

interaction 
Interaction 
effect (%) 

N-S in both direction 845.99 734.25 -13.21 
E-W in both direction 626.21 582.46 -6.99 

845.99 817.71 -3.34 
626.21 590.93 -5.63 

N-S in x-direction 
E-W in y-direction 
Resultant direction 1052.54 1008.89 -4.15 

4. Conclusion 

The biaxial interaction between the restoring forces of the LRB 
bearings in two horizontal directions is considered in the response 
analysis of simple isolated bridge model. The response with biaxial 
interaction is compared with those without interaction to investigate 
the effects of biaxial interaction. The analysis varies important 
parameters including the isolator properties, the characteristics of the 
harmonic motion such as the excitation frequency, amplitude ratio and 
phase difference and the substructure dynamic characteristics. 

Numerical results show that the isolated bridge structure is 
significantly influenced by the interaction of bearing forces. The 
bidirectional interaction of the restoring forces of the LRB has 
considerable effects on the seismic response of the isolated bridges. If 
these interaction effects are ignored, then the peak bearing 
displacements are underestimated the peak bearing restoring forces 
are overestimated, which can be crucial from the design point of view. 

The independent unidirectional models over predict the 
maximum force in the bearing by more 20% because of the square 
yield surface, depending on the input excitation, isolation and bridge 
model parameters. In comparison, loading in one direction while on 
the bi-directional circular yield surface requires unloading in the other 
direction. The unidirectional model overestimates the maximum force 
in the bearing and also overestimates the hysteretic energy dissipation, 
particularly in the transverse direction. The coupled model shows 
considerable interaction effects in hysteresis loops. It has been 
observed that the effect of the biaxial interaction is considerable in the 
response of bridges isolated by LRB bearing under bi-directional 
motion. As the substructure becomes more flexible, the bearing 
deformation decreases and the maximum displacement increases 
because of reduced hysteretic energy dissipation in the bearing. This 
study demonstrates that the designer must consider the spectral 
characteristics of the ground motion and the trade-off between 
deformation in the bearing and substructure. Designs based on 
uncoupled inelastic springs may not accurately represent the forces 
transferred to the substructure and hysteretic energy dissipation. 
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Fig. 5 Input excitation frequency effect on LRB restoring force 

 
Fig. 6 Pier transverse flexibility effect on LRB restoring force 
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