ゴム支承を対象とした耐震設計用レオロジーモデル

Rheology model of bridge rubber bearings for seismic design

埼玉大学	正員	奥井 義昭	(Yoshiaki Okui)
埼玉大学	学生員	小島康幸	(Yasuyuki Kojima)
埼玉大学		A. R. Bhuiyan	
埼玉大学		市野 一樹	(Kazuki Ichino)
ゴム支承協会	正員	今井 隆	(Talashi Imai)
(独)北海道開発土木研究所	正員	三田村 浩	(Hiroshi Mitamura)

1. はじめに

橋梁の耐震設計の非線形動的解析において、ゴム支承 は通常、バイリニアでモデル化されている.このモデル は、ある特定の振動数および振幅においてゴム支承が 正弦波加振された実験データに基づき定められている. 高減衰系のゴム支承においては、主に粘性効果によって 減衰性能を引きだしているため、ひずみ速度によらな い一定のバイリニアモデルでは、ひずみ速度が及ぼす ゴム支承の剛性や減衰性能の影響が必ずしも正しくモ デル化されているとはいえない状況にある.さらに、粘 性効果は温度に変化によって大きく変化するため、別報 1)では寒冷地における橋梁用ゴム支承の性能評価実験 を行っている.

本報告ではこの実験結果を受けて,ゴム支承の速度依存性等をモデル化するためのレオロジーモデルと,パラ メータの同定方法について報告する.全ての実験は平成 19年度迄に実施するため,現時点では実験データが全 てそろってない状況であるため,パラメータ同定のため の方法論とゴム単体の実験結果を用いて説明する.

2. レオロジーモデル

本研究ではゴム支承を図1に示すレオロジーモデルに モデル化し,バネA,B,CおよびスライダーS,ダッシュ ポットDのパラメータを同定することを目的とする.こ のモデルはスライダーとマクスウエルモデルを並列につ なげたもので,最も単純な粘弾塑性モデルといえる.モ デルの構成は単純なものとし,その代わりにバネおよび ダッシュポットを非線形モデルとすることで,実際のゴ ム支承の挙動を再現することを目指している.

3. 実験とパラメータの同定方法

実験とパラメータ同定全体のフローチャートを図1 に 示す.パラメータの同定は(a) サイクリック・リラクゼー ション試験,(b)単調載荷試験,(c)シンプル・リラクゼー ション試験の3つの試験結果に基づいて行われる.次節 以降では各試験方法の詳細について説明する. なお,供試体は 240mm,ゴム層 5mm×6層であり, 形状の詳細は別報1)に示されている.ゴムの種類はG12 を用い,RB,LRB,HDR のゴム支承を用いる.全ての実 験において圧縮応力度は6N/mm²は一定で,変位制御に よって水平力を作用させる.

図 2 パラメータ同定のフローチャート

3.1 サイクリック・リラクゼーション試験

この試験の目的は,つり合い応答における応力–ひず み関係を求めることである.ここで,つり合い応答とは, 理論的には無限に遅いひずみ速度で載荷した場合におけ る応答を意味する.現実にはこのような載荷は時間的な 制約から無理であるが,図3(a)に示すように異なるひず みレベルにおいて,ひずみを一定値に保つ,リラクゼー ション試験を行う.その際の応力の履歴[図3(b)]から応 力の経時変化がほぼ収束した状態での応力値を求める. この状態をつり合い状態と見なして,つり合い応答時の 応力–ひずみ関係[図3(c)]とする.

つり合い状態においては,図1におけるダッシュポットDはひずみ速度が0であるため,力が作用しない.そのため,つり合い応答はバネA,BおよびスライダーSののみが影響していると考えられ,これらの要素のパラ メータをこの試験結果から決定することができる. 3.2 単調載荷試験

この試験では瞬時応答を求めることが目的である.瞬時応答とは理想的には載荷速度が無限大の場合の応答を 意味する.現実には試験機の性能の制限から無限大の載 荷速度は不可能であるが,図4(a)に示すようにひずみ速 度 γを一定に保った単調載荷試験をひずみ速度を徐々に 上げて複数回行う.この結果から求められた応力–ひず み関係図4(b)の瞬時応答における値を外挿して求める.

(b)

図 3: サイクリック・リラクゼーション試験: (a) 作用ひず み履歴; (b) 応力履歴; (c) つり合い応答における応力-ひず み関係

(b)

図 4: 単調載荷試験: (a) 作用ひずみ履歴; (b) 応力-ひずみ 関係

瞬時応答においては,ダッシュポットDの変形は0と なり,バネA,B,CおよびスライダーSの挙動によって応 答値が生じているものと解釈できる.既に,サイクリッ ク・リラクゼーション試験によって,バネA,Bおよびス ライダーSの特性は同定されているため,応答値の応力 からこの分のこれらの要素による応力を差し引くことで バネCのみに作用する応力を求めることが可能であり, これからバネCの同定が可能となる.

3.3 シンプル・リラクゼーション試験

この試験では、ダッシュポットDの特性を決定する. そのため、ダッシュポット部分の作用応力とひずみ速度 の関係を次のようにして求める.まず、図5(a)に示すひ ずみ履歴を与え、応力の応答として、図5(b)を得たと する.このとき、応力の経時変化が収束した状態はつり 合い状態であり、そこからの応力の差はオーバーストレ スと呼ばれる.このオーバストレスはバネCおよびダッ シュポットDに作用している応力となる.バネCの特性 は同定済みであるので、バネ部のひずみを作用応力(= オーバストレス)から算定することができる.全ひずみ からこのバネ部のひずみを差し引くことでダッシュポッ トDの部分のひずみを算定できる.

図 5: シンプル・リラクゼーション試験: (a) 作用ひずみ履 歴: (b) 応力-時間関係

図 6 オーバーストレスとひずみ速度の関係

ゴム単体の純せん断作用下でのシンプル・リラクゼー ション試験から,この方法を用いて得られた最大値で無 次元化したオーバーストレスとひずみ速度の関係を図6 に示す²⁾.この図においてデータの傾きが粘性係数に相 当するが,図から分かるように粘性係数はひずみ速度の 非線形な関数となる.この効果を考慮してモデル化を行 う予定である.

4. まとめ

ゴム支承のレオロジーモデルモデルのパラメータ設定 方法について報告した.今後,実験データにに基づいて レオロジーモデルを提案することとなるが,耐震解析用 のレオロジーモデルの設定においては,過度に複雑にな らないように十分配慮し,設定したパラメータの耐震設 計における影響も考慮して行うつもりである.なお,当 日の発表においては得られた実験結果の一部を報告する 予定である.

参考文献

- 今井隆他: 寒冷地における橋梁用ゴム支承の性能評価実験,土木学会北海道支部 H18 年度年次学術講演会講演概要集, 2006.
- 2) Amin, et al.: Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification, Int. J. of Plasticity, 22, pp.1610-1657, 2007