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1. Introduction 
The study of origin-destination flow (O-D flow) through 

networks and intersections provides basic information for 
planning and design as well as for traffic management and 
control. There have been many efforts attempted to estimate 
these flows using data from inexpensive technique such as 
vehicle counts from detectors. In control and management 
applications, the short-term estimation is more important 
compared to the long-term average values. In this regard, 
Kalman filtering technique has been used to automatically 
estimate dynamic O-D flow by a number of researchers [1-3]. 
However, the natural equality constraints for conservation of 
vehicles and the non-negativity constraints of O-D flows (or 
splits) were often neglected or at most were dealt with using 
heuristic method (truncation and normalization).     

The objective of this paper is to present a new theory of 
constrained Kalman filter developed by Simon and Chia [4] 
and Simon and Simon [5] and using this theory to formulate a 
new framework for estimation of O-D flows considering 
equality and non-negativity constraints. In section 2, a brief 
review of standard Kalman filtering technique is provided. In 
section 3, the method is then modified in order to deal with 
constraints explicitly. In section 4, the problem of 
intersection O-D matrices estimation is formulated using this 
new technique and finally the concluding remarks are drawn.  

 
2. Kalman Filtering Technique 

Consider the discrete linear system given by: 

kkkk wxAx +=+1  (1) 

kkkk vxCy +=  (2) 
where x is the (n*1) state vector, y is the (m*1) measurement, 
k is the time index, n and m are respectively the number of 
state and observation variables, A and C are coefficients 
matrices of state and measurement equations, w and v are 
noises of state and measurement equations and are assumed 
to be Gaussian with covariance matrices as W and V, 
respectively. Further, it is assumed that w and v are 
uncorrelated. 

The equations of Kalman filter for this type of system 
are given as below: 
Time update: 

1ˆˆ −
− = kkk xAx  (3) 

k
T
kkkk WAPAP += −

−
1  (4) 

( ) 1−−− += k
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kkk

T
kkk VCPCCPK  (5) 

Measurement update: 

)ˆ(ˆˆ −− −+= kkkkkk xCyKxx  (6) 

−− −= kkkkk PCKPP  (7). 
Here, K is the Kalman gain, P is the covariance matrix of 
estimation error.  

 
3. Constrained Kalman Filter  

In the previous section, state variables are estimated 
without considering any constraint. In reality, the estimation 
is sometimes not allowed to fall into the infeasible regions. 
The constraints for the general O-D flow estimation problem 
are equality and non-negativity constraints. They will be 
explained separately in the following subsection. 

3.1 Equality Constraints 
For the dynamic system in (1) and (2), consider 

additional constraints 

kk dDx =  (8) 
where D is a known (s*n) matrix, d is a known (s*1) vector, 
and s is the number of constraints. Hereafter, to simplify the 
equations, subscript k will not be shown except required. 
Simon and Chia [4] proposed the method to incorporate 
equality constraints into the standard Kalman filter as 
follows: 

 ( ) ( )dxDDDUDUxx −−=
−−− ˆˆ~ 111 TT  (9) 

 ( ) DPDDUDUPP
111~ −−−−= TT  (10) 

where x~  and P~  are the new state vector and error 
covariance matrices after imposing constraints, U is any 
symmetric positive definite weighting matrix. In Simon and 

Chia [4], if 1−= PU , the model is equivalent to the 

maximum probability method, and if IU = , it is equivalent 
to the mean square minimization method. The method 
considered in this paper follows the maximum probability 
method. Both equations (9) and (10) have two terms; the first 
term is the estimate obtained from unconstrained Kalman 
filter (equation (3) to (7)), the second term can be considered 
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as the correction term for equality constraints. 

3.2 Non-negativity Constraints 
Consider now the following non-negativity constraints 

with system equation (1) and (2) 

0x ≥k  (11). 
Simon and Simon [5] have proposed the method to solve 
inequality problem using the preliminary estimated result 
from unconstrained Kalman filter. The problem is redefined 
as 

 ( )xUxxUx
x

~ˆ2~~min~
TT −  such that 0x ≥~  (12) 

where U is the same as in previous. This problem is known as 
a quadratic programming problem and can be solved using an 
active set method [5]. This method uses the fact that it is only 
those constraints that are active at the solution of problem 
that are significant in the optimality conditions. Thus the 
non-negativity problem is reduced to the equality constraints 
problem by defining a new set of equality constraints which 
correspond to the active set of non-negativity problem. Using 
the new set of equality constraints, equations (9) and (10) can 
be used and we can then obtain the estimate of non-negativity 
constraints problem. 
 

4. Intersection O-D Matrices Estimation 

This section explains the framework of using 

constrained Kalman filter to estimate intersection O-D 

matrices. Denote )(kqi  as volume entering at entrance i 

during time interval k, )(ky j  as volume which leaves exit j 

during time interval k, )(kq and )(ky as vectors 

containing )(kqi and )(ky j  respectively, )(kbij  as fraction 

of O-D flow (O-D split) entering at entrance i and leaves at 

exit j during time interval k, )(kjb as vector containing all 

split which are related to the jth exit flow, )(kb  as the 

vector containing all split parameters. The following 

relationships should be hold: 

∑
=

=
on

i
ijij bqky

1
)(  (13) 

1)(0 ≤≤ kbij  for all i, j, k (13) 

∑
=
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dn

j
ij kb

1
1)(  for all i, k  (14) 

There are two alternative approaches to formulate the above 
equations as state-space model. The first method, regarded as 
the simultaneous method, is to estimate all split parameters at 
the same time. The second approach, regarded as the 
exit-based method, is to separate the estimation according to 
each exit jth.  

The state-space formulation of the first approach is 
defined as 
 )()1()( kkk wbb +−=  (15) 
 )()()()( kkkk vbQy +=  (16) 
where Q(k) is an entry flow matrix which has a one-to-one 
mapping with q(k) while w(k) and v(k) are as before. 
Equations (3) – (7) are used to obtain the unconstrained 
estimate and equations (9) – (10) are then used to impose 
equality constriants of equation (14). Next is to check for the 
non-negativity constraint of the estimate. If there exist an 
active set, include this set into the equality constraints and 
perform again equations (9) – (10) until the non-negativity 
constraint is satisfied. The state-space model of the second 
approach is 

 )()1()( kkk jj wbb +−=  (17) 

 )()()()( kkkk jj vbqy +=  (18). 
In this approach, similar to the work of Cremer and Keller [1], 
Kalman gain, error covariance matrix, and split parameters 
are calculated separately for each exit flow during the 
unconstrained estimate. The result of split and error 
covariance is then combined into a single vector and matrix. 
We then use the same procedure as the first approach to 
obtain the correction for equality and non-negativity 
constraints. After the correction, error covariance matrix is 
then separated in a similar way as when it is combined. 

 

5. Concluding Remarks 
In this paper, a new framework for intersection O-D 

matrices estimation based on constrained Kalman filter is 
presented. The framework will be tested with simulated and 
real traffic data as well as the comparison with some other 
estimation methods in the near future. 
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