遠心力模型実験による岩盤斜面の安全率評価法

Safety factor assessment method of rock slope by centrifuge model test

北海道開発土木研究所 正会員 日下部祐基,石川博之,伊東佳彦,國松博一

豊橋技術科学大学 正会員 三浦均也 応用地質(株) 正会員 上堂薗四男 ケイジーエンジニアリング 正会員 只野暁 (株)ウェザーコック 山本真裕 (株)中田測量 中田賢

1.はじめに

北海道では、近年大規模岩盤崩落が多数発生してお り、国民の生命を奪うとともに、道路トンネルなどの 公共構造物に多大な被害を生じさせている(平成8年 一般国道229号豊浜トンネル、平成9年同国道第2白 糸トンネルの各崩落事故、平成13年一般国道333号 北見市北陽、平成16年一般国道336号えりも町の道 路斜面崩落事故)。

著者らは、大規模岩盤崩落のメカニズムに関連する 亀裂進展の機構を明らかにするために、一連の遠心力 模型実験を実施してきた。これまでに、所定の位置に 設定した切欠きを有する模型供試体について自重(遠 心加速度)を作用させて破壊に至らせる実験、および 自重に加えて切欠き内に水圧を作用させて破壊に至ら せる実験¹⁾を行った。さらに、より原位置に近い実 験条件として、材質を自然岩体とした2次元モデル供 試体、および人工材料のモルタルで作製した3次元モ デル供試体を用いた遠心力模型実験²⁾を行った。こ れらの実験で観察した崩落現象を、有限要素法および 極限つりあい法によって解析した。

ここでは、これまでの研究成果をもとに遠心力模型 実験を用いた岩盤斜面の安全率評価法を提案する。 本評価法は、高精度の地形デジタルデータが取得可能 な3次元レーザ測量と、そのデータを用いて地形模型 を作製するコンピュータ自動切削装置、現地岩盤の強 度特性をシミュレートするモルタル配合技術、そして 遠心力模型実験を行う当研究所所有の大型遠心力載荷 装置を組み合わせて、実斜面の破壊安全率を求めるも のである。

2.基本原理

遠心力模型実験による安全率評価法の基本原理は、 以下の通りである。図-1に示すように、本研究の解 析で用いている極限つりあい式の単純な破壊条件を用 いて示す。崩落危険岩体の起動モーメント*M*_Dと、亀 裂が進展する面に作用する抵抗モーメント*M*_Cは、以 下のように求められる。

$$M_D = \frac{\gamma B h^2}{2} \tag{1}$$

$$M_{c} = \frac{\sigma (B - L)^{2}}{6}$$
 (2)

ここに、 :岩体の引張強度 (N/m²), *B*:崩落危 険岩体の高さ(m), *L*:既存切欠きの深さ(m),

:岩体の単位体積重量 (N/m³), *h*:崩落危険岩体の幅(m)

実斜面の安全率 Fp は、以下の式で求められる。

$$F_{p} = \frac{M_{c}}{M_{p}} = \frac{\sigma (B - L)^{2}}{3\gamma Bh^{2}}$$
(3)

ここに、*Fp*: 実斜面の安全率

一方実斜面と全く同じ材料で作った縮尺 1/nの相似 模型の安全率 Fm(以下、模型斜面の安全率)は、以 下の式になる。

$$F_{m} = \frac{\sigma \left(B / n - L / n \right)^{2}}{3\gamma B / n \left(h / n \right)^{2}}$$
$$= n \frac{\sigma \left(B - L \right)}{3\gamma B h^{2}} = n F_{p} \qquad (4)$$

つまり、重力場(1 g 場: g は重力加速度)では、 模型斜面の安全率が実物の n 倍の値を示すことになる。 そこでこの模型を重力場の n 倍の遠心力場におくと (模型を遠心力載荷装置に設置して装置を回転させ、 n g の遠心力に到達した時点)岩盤の単位体積重量 が n 倍になり、分母が n となって Fm = Fp となる。

図-1 極限つりあい式の破壊条件図

しかし、この関係だけでは遠心力模型実験から実斜面の安全率 F_p =1.0 以外の数値を定量的に求めることはできない。模型を重力場の n倍の遠心力場においた場合に模型が破壊したときは、実斜面のすべり安全率 F_p =1.0 であり、破壊しないときは F_p が 1.0 以上、n gに到達前に破壊したときは F_p が 1.0 以下にあることまでがわかる。

そこで、さらに模型の破壊加速度 $n_{f} g$ に注目する。 1/n 模型斜面が $n_{f} g$ の遠心力場で破壊したときの模 型斜面の安全率 F_{m} は 1.0 になる。これを式に示すと 以下のようになる。

$$F_m = 1.0$$

$$= \frac{\sigma (B / n - L / n)^{2}}{3(n_{f} \gamma) B / n(h / n)^{2}} = \frac{n}{n_{f}} F_{p} \quad (5)$$

上式より以下のように実斜面の安全率 *F_p* が求められる。

$$F_p = \frac{n_f}{n} \tag{6}$$

したがって、実斜面の安全率 *F_p* は、破壊加速度 *n_f* と模型縮尺 *n*の比として求められることになる。

3.評価法フローと工程詳細

図-2に安全率評価法のフローを示す。以下に代表 的な作業工程の概要を述べる。

3.1 3次元レーザ測量3)

本測量に用いられる3次元レーザ・スキャナーは、 写真-1に示すようにレーザ光を測定対象物に照射し、 反射光が戻ってくる時間を計測することによって、測 定対象物の正確な形状を3次元的に計測するものであ る。3次元レーザは、数百メートル先までの対象物を mm 単位の精度で計測することができるので、容易に 近づけない場所や、接触して測定することが困難な構 造物や複雑な形状を持つ地形の計測、直接触れること が許されない文化遺産等を高精度かつ高速に計測する ことが可能になる。3次元レーザ測量は、危険な壁面 調査や土木構造物の施工検査など用途は多様である。

3.2 遠心力模型実験供試体の作製⁴⁾

供試体の作成では、3次元レーザ測量データを用いて コンピュータ自動切削装置による高精度地形模型を作 製し、それを用いてFRP(繊維強化プラスチック)の型 枠と塩化ビニール板の既存切欠きを作製する。装置の 概要は、図-3に示すもので切削成形する機能と成形部 分に直接印刷する機能があり、亀裂線などの情報を書き込 むことが出来る。本装置は、特許取得((株)ウェザー・ コック)の技術である。

3.3 遠心力模型実験

実験に用いる遠心力載荷装置は、実験対象物に遠心 加速度を付与できる装置である。本研究で用いている

図-2 安全率評価法フロー図

写真-1 3次元レーザ・スキャナー と測量状況

図-3 コンピュータ自動切削装置概念図

装置は写真-2に示すもので、有効回転半径 3.5m,最 大遠心加速度 100g,最大搭載質量 2500kg(最大加速 度時)の比較的大型の装置である。

地球上の重力加速度場にある物質の重さは、質量に 重力加速度を乗じて求められる。例えば質量 1kg の物 質の重さは、重力加速度 g =9.81m/sec² を乗じて 9.81kgm/sec² = 9.81N となる。これを遠心力載荷装置 に搭載して、例えば重力加速度の 100 倍の遠心加速度 を付与すると、遠心加速度場では重さが 100 倍の 981N になる。遠心力模型実験とは、基本原理で示し たように遠心力を利用して小型模型に実物と等しい自 重応力を作用させ、その変形や破壊の挙動を調べよう とするものである。

4. 実斜面実施例

遠心力模型実験に用いた 3 次元モデルは、写真-3 に示す北海道島牧村地区の岩盤斜面を対象として縮尺 1/30 とした。供試体は、型枠内に想定される既存亀 裂を切欠きとして塩ビ板で型取って設置し、現地斜面 を構成する岩石の一軸圧縮強度 20N/mm²を目標強度 とした配合でモルタルを打設して作成した。図-4 お よび写真-4 に 3 次元モデル供試体を示す。

切欠きは、図-5 に示すように 3 面からなり左側か ら A 面,B 面,C 面とすると、A 面は供試体天端から底 面まで連続した切欠きであり、B,C 面が底部に進展亀 裂面を有する切欠きである。遠心力模型実験では、こ の切欠き長さをパラメータとし、切欠き深さ L=233mm(実斜面深さ L=7.0m)を1 ケース、 L=267mm、283mm(実斜面深さ L=8.0m, 8.5m)を各 2 ケースの計 5 ケースについて実施した。表-1 に実 験条件と結果を示す。なお、表中には実験ケース毎に 室内試験で得られた強度特性も併記した。

各実験供試体の強度には、ばらつきが見られる。そ こで供試体の実測引張強度 _tと目標引張強度 _s (=qu/10=2.0N/mm²)の比を (= t/ s)とし て、式(5)を用いて以下のように補正する。なお、 引張強度は圧縮強度の 1/10 と仮定する。

 $F_{mt} = 1.0$

$$=\frac{\sigma_{t}(B/n-L/n)^{2}}{3(n_{f}\gamma)B/n(h/n)^{2}}$$

$$= \frac{\alpha \sigma_{s} (B/n - L/n)^{2}}{3(n_{f} \gamma) B/n(h/n)^{2}} = \frac{\alpha \cdot n}{n_{f}} F_{ps}$$
(7)

ここに、 F_{mt} :模型斜面が引張強度 tの場合の安 全率, F_{ps} :実斜面が引張強度 sの場合の安全 率,)

上式より実斜面の安全率 *F_{ps}*が以下のように求められる。

$$F_{ps} = \frac{n_f}{\alpha \cdot n} \tag{8}$$

写真-2 遠心力載荷装置本体

写真-3 島牧村実斜面

図-4 3次元モデル供試体概念図

写真-4 3次元モデル供試体写真

	自由面長さ	切欠き深さ	破壊加速度	実験後抜き取り試料								
					湿潤密度	一軸強度 破壊ひずみ 静弾性		静弹性係数	ポアソン比	引張強度	強度定数	
美駛雷亏	L	L	美測値	が令	t	qu	f	E _{50S}		t	Cuu	uu
	(mm)	(mm)	nf(g)	(日)	(g/cm^3)	(N/mm^2)	(%)	(N/mm^2)		(N/mm^2)	(N/mm^2)	(度)
2-1	183	233.0	100	28	2.207	22.7	0.26	1.40×10^{4}	0.203	1.89		
2-2	183	267.0	80	20	2.296	32.2	0.28	1.79×10 ⁴	0.216	2.46		
2-3	183	267.0	70	22	2.283	34.1	0.32	1.61×10 ⁴	0.217	2.31		
2-4	183	283.0	55	20	2.287	21.7	0.25	1.45×10 ⁴	0.238	1.98		
2-5	183	283.0	60	22	2.287	22.1	0.28	1.31×10^{4}	0.237	1.83	5.95	42.1

表-1 3次元モデル実験結果

図-6は、実斜面の切欠き深さと引張強度 。とした場合の安全率の関係を示したものである。切欠き深 さが大きいほど、安全率が減少する傾向が認められる。 なお、切欠き深さが最も深い 8.5m の安全率が 8.0m のものより大きくなっている原因は、図-5 に示した ように切欠き形状を複雑にしたための実験誤差と考え られる。

この関係を精度良く求めれば、実斜面において安全 率 1.0 を下回る切欠き深さを定量的に求めることが可 能になる。

5.まとめ

 岩盤斜面の3次元レーザ測量と、同測量に基づく コンピュータ自動切削装置による模型型枠の作成技術、 特殊なモルタル配合による現地岩盤の強度シミュレー ション技術、大型遠心力載荷装置を用いた遠心力模型 実験技術を組み合わせて、岩盤斜面の安全率評価法を 提案した。

2) 本評価法を実斜面に適用した結果、切欠き深さが 大きいほど安全率が減少する傾向が認められた。

6. あとがき

岩盤斜面の安全率評価法の研究は、北海道開発土木 研究所が平成 13 年度より 5 年間取り組んできたもの である。本年度が最終年度となり、現在成果とりまと めを行っている。本評価法は、実用化にかなり近づい ていると考えており、今後実斜面を対象にした実験を 追加実施して精度の向上を図りたいと考えている。

参考文献

- 日下部祐基・池田憲二・渡邊一悟・三浦均也 (2002):切欠きを有する岩盤の遠心力場における 崩落実験,地盤工学会,第 47 回地盤工学会シン ポジウム論文集,pp.327-334.
- 2) 日下部祐基・三浦均也・石川博之・伊東佳彦・國 松博一(2005):切欠きを有する三次元岩盤の遠心 力場における崩落実験,地盤工学会,第 50 回地 盤工学会シンポジウム論文集,pp.355-362.
- 原口強・中田賢・矢橋潤一郎 (2005): 航空 / 地 上レーザ計測による大規模岩盤崩落斜面の三次 元モデリング,土と基礎,地盤工学会, Vol.53, No.4, pp8-10.
- 4) 川村信人・山本真裕・山本一枝 (2005): 産学共

同研究と知財活用事例 - 地球科学及び災害防止 のためのデジタル 3D データから作られた高精度 地形模型の実用化研究 - ,産学連携学会第 3 回 大会予稿集, pp.52-53.