岩盤斜面の不安定化実験に関する計測および数値解析

Gauging and numerical analysis on an experimental instabilization of rock slope

(株)	構研エンジニアリング	正会員	○阿部	和樹(Kazuki Abe)
室蘭Ⅰ	二業大学	フェロー	岸	徳光(Norimitsu Kishi)
(独)	北海道開発土木研究所	正会員	岡田	慎哉(Shinya Okada)
(独)	北海道開発土木研究所	正会員	國松	博一(Hirokazu Kunimatsu)
(株)	構研エンジニアリング	非会員	五十嵐	【隆浩(Takahiro Igarashi)
(株)	構研エンジニアリング	正会員	小林	一人(Kazuhito Kobayashi)

1. はじめに

平成8年に発生した豊浜トンネル岩盤崩落事故,およ び平成9年に発生した第2白糸トンネル崩壊事故を契機 として,大規模な岩盤崩壊対策が道路防災上の重要な課 題として認識された.このような背景を受け,全国で岩 盤モニタリング箇所の選定が行われ,各地で計測が行わ れてきた.その目的は岩盤の常時状態および崩壊時の基 礎データを収集することであり,テストフィールドの一 つとして選定された北海道島牧村立岩地区においても, 平成10年度から計測が続けられてきた.

これまで岩盤の常時状態における挙動把握に関し,本 テストフィールドでも一定の成果が挙げられてきた¹⁾ が,モニタリング開始から6年以上が経過し,計測機器 には老朽化の兆しも認められてきた.

このような状況を考慮し,岩盤の崩壊時の挙動を把握 することを目的として,発破工による岩盤斜面の不安定 化実験が平成16年10月に実施された.

本文では、立岩地区の岩盤斜面における不安定化前後 の計測データの状況、および不安定化実験を行うにあた り発破の効果を確認するために実施した静的応力解析の 結果について報告する.

2. 不安定化実験の概要

ー般国道 229 号島牧村立岩覆道(旧道)の直上に位置 する対象岩体は、図-1 に示すように高さ約 20m のオー バーハングを伴った岩体である.対象岩体と地山の間に は開口亀裂が存在している.

不安定化は,岩体下部のオーバーハング部を発破により助長し,自重による自然な不安定化と崩落を促すねらいで実施された(図-2).

3. 計測機器の設置状況

本岩体には,開口亀裂を主とした岩体の挙動を測定す る目的で,図-3 に示すように各種センサーが設置され ている.

岩体表面で開口亀裂の挙動を把握する目的で, 亀裂変位 計・ワイヤー式変位計, また対象岩体と地山の相対的な傾 斜の変化を把握する地盤傾斜計, ボーリング孔内には一端 を固定点として対象岩体側および地山側の変位量を見る孔 内変位計, さらに亀裂付近をねらって孔内ひずみ計が, そ れぞれ設置されている. AE センサーは, 岩盤が微少な破壊 を起こす際に発生される弾性波を拾うことにより, 崩壊の

図-1 不安定化対象岩体

図-2 発破工による不安定化の概要

図-3 計測器の配置状況

現象を捉えようとする計測器である. データサンプリング 間隔は, 亀裂変位計および孔内ひずみ計が 1/100 秒, その他 は1分である.

4. 静的応力解析の概要

不安定化実験を実施するにあたっては、事前に解析を 行い、発破の範囲・規模等の決定に利用した.しかしな がら、実際の発破による不安定化では、一部、計画して いた範囲を取り払うことができなかった.そこで、発破 の効果を確認することを目的として、三次元弾性 FEM による自重解析を実施した.

図-4 に解析モデルを示す.解析モデルは,発破前後 に実施された三次元レーザープロファイラ測量(測定点 約100万点)の結果より三次元等高線を作成し,等高線 データから8節点固体要素を用いてメッシュ化したもの である.

なお、開口亀裂部の走行傾斜は、目視観察とボアホー ル観察の結果より想定し、亀裂の深さ・形状は、開口亀 裂の温度変化による変位量および岩盤内部の温度記録を もとに温度応力解析¹⁾により逆解析的に想定した. 亀裂 は解析上、接触面として考慮している.図-5 には、モ デル化した対象岩体裏面の状況を示す.

モデルの総要素数は約 19,300,総節点数は約 23,200 である.静的解析であるため,発破衝撃等の動的効果は 考慮していない.また,岩盤の物性値は現地地質調査結 果等を参考に,表-1の通り仮定した.

5. 解析結果

図-6 には発破前後における岩体背面の直応力および せん断応力分布を示す.

以下に発破前後の対象岩体背面の応力状態を比較した. 直応力分布では,発破前に比べ背面の引張領域が増大

し、新たに右側に引張領域が発生している. 岩体底部の 圧縮領域では、特に左側の圧縮応力の増加が認められる.

せん断応力分布では,背面左側で減少しているが,右 側では増大している.岩体底部でも左側が減少,右側が

図-5 対象岩体裏面の状況

表-1 岩盤物性値

岩 盤 種 別	密度 [t/m ³]	弹性係数 [MPa]	ポアソン比
ハイアロクラスタイト	2.23	1066	0.197
層状火砕角礫岩	1.61	1010	0.180

増大という傾向が見られた.

以上の解析結果から,岩体は発破により不安定化が進行したと考え,発破後1年間計測を継続した.

6. 計測結果

計測結果を図-7 に示す. 各データは1日平均化したものを用い,実測値と温度の線形相関から温度補正を行っている(AE センサーを除く). ここでは代表的なデータとして亀裂変位計, 孔内ひずみ計, 孔内変位計およびAE センサーのデータを示した.

計測開始から不安定化実施までの約6年間,各計測器 ともに年周期的な変動を繰り返しているほかは,累積的 な傾向もほとんどなく,安定した状態が続いた.年周期 的な変動は外気温の影響によるものと考えられている.¹⁾

平成16年10月の発破時には、各計測器ともに大きく 変動し、その後変位およびひずみは残留した状態となっ ている. 岩体表面に設置されている上部亀裂変位計では、 開口亀裂が開く方向(Z+方向)に約11mm、対象岩体 が落下する方向(Y+方向)に約7.5mmの変位が確認 された. 岩体内部に設置されている上部孔内ひずみ計で は、亀裂が閉じる方向(圧縮側)に反応し、1700μひず

みを超える値が観測された.ただ,孔内ひずみ計の測定 可能範囲は±500μであることを考慮すると,その後の 測定値の信頼性は低い.また,孔内変位計では地山側に はまったく変化がなかったのに対し,対象岩体側に 5mm を超える変動が亀裂の開く方向に発生し,その後 も5ヶ月間ほど累積的な傾向を示した.図-8には,亀 裂変位計と孔内変位計の測定方向を模式的に示す.

また,図-9 は 2004 年の発破時をゼロとして,その 後の推移を過年度の平均値と比較したものである.上部 亀裂変位計では,発破後の10月から翌年2月にかけて

も例年とほぼ変わらない状態で推移しているのに対し, 対象岩体側に設置されている孔内変位計では同時期に 1.7mm 程度の累積傾向が確認できる.地表面に設置さ れている計器などにはこのような傾向が見られないこと, また地山側の孔内変位計にも目立った変動がないこと, 計測器の電気的な故障等ではないことが確認されている ことなどを考慮すると,局所的な岩体の動きを捉えた可 能性が高いと推測される.AE センサーでは,1 年を通 して過年度と比較してもヒット数が少ない結果となった が,4月では平年を上回る結果となった.

以上のように、一部の計測器を除いて、発破時の変動 を除けば、発破後1年が経過した段階では、落ち着いて 推移しているといえる.

7. 計測結果と解析結果の比較

発破前後の静的応力解析の結果と、計測器による実測 結果との比較を行うに際し、不安定化実験における対 象岩体の挙動を、図-10 に示す.これは、対象岩体を剛 体と仮定し、各計測器から得られた変位データから重心 の移動量・回転角を計算し、対象岩体の挙動を三次元的 に模式化したものである.変位および回転角の表示倍率 は 200 倍である.

岩体を正面から見る(a)と,斜面左側が下がる方向に約0.1 度回転し,岩体は右下方向に変位したと考えられ

る.また,岩体を真上から見る(b)と,鉛直軸に対して 反時計回りに約 0.1 度の回転が見られ,これは開口亀裂 が開く状況を示している.

これを静的応力解析の結果と比較すると、開口亀裂が 開く方向に発生した変位は、岩体の背面に引張領域が拡 大したこと、また、岩体の左側が下がる方向に発生した 変位は、岩体底部左側の圧縮応力が増加したことと、定 性的に整合していると考えられる.

8. まとめ

本実験では、岩盤の自然な崩落を想定し、岩盤の不安 定化を行い、計測器による実測および数値解析により、 その挙動の把握を図ってきた.その結果、計測データか ら得られた発破直後における岩体の挙動は、数値解析結 果と定性的に整合していることが分かった.数値解析に おける岩体の亀裂のモデル化は、過年度に実施した温度 応力解析により想定している.

以上のことから、今回の解析で想定した亀裂の範囲, 形状は概ね妥当であった可能性があり、今後、岩体内部 の亀裂を想定する手法のひとつとして、温度応力解析が 活用できる可能性が示唆された.

参考文献

- 北海道での岩盤計測に関する調査技術検討委員会中 間報告書;平成13年3月
- 一般国道 229 号島牧村立岩岩盤計測業務報告書;平 成 16 年 3 月,小樽開発建設部
- 3) 斜面計測解析検討業務報告書;平成 16 年 3 月,(独)開発土木研究所