釧路湿原における透水係数の空間分布に関する統計的解析

Statistical analysis concerning space distribution of permeability in Kushiro Wetland

室蘭工業大学	学生員	相木日出	出男	(Hideo Aiki)
室蘭工業大学	フェロー	藤間 聪	忩	(Satoshi Tohma)

1. まえがき

釧路湿原は 1980 年にラムサール条約に登録され、1987 年には国立公園に指定される国際的に重要な湿原である。 また、湿原には保水・浄化機能、地域気候を緩和する機 能などがあり、地域住民にとってもその役割は大きい。

近年、釧路湿原では戦後の社会経済活動の影響によっ て湿原の地下水位低下による乾燥化が懸念されており、 それに伴う湿原面積の減少、環境および生態系の急激な 変化が問題となっている¹⁾。

本論文は、この湿原乾燥化において重要なパラメータ となる地下水位に着目し、釧路湿原における地下水流動 特性を規定する透水係数の分布を統計的に解析し把握す る事を目的とする。

著名の一人は、地下水位の推定に用いる解析手法とし てクリギング法を用い、胆振地方の美々川・ウトナイ湖 周辺を中心に実績を示してきたが、釧路湿原では地層構 造の複雑性から、透水係数の相関距離が小さく解析が困 難であることを把握している。

そこで、このクリギングにかわる新しい手法として自 然界におけるフラクタル性に基づき、地下水位変動量の フラクタル特性を検討し透水係数の空間分布に関する統 計的解析を進める。

2. フラクタル

フラクタルとは、1975年にMandelbrotによって生み出 された幾何学の概念であり、一般的に図形の全体と部分 が自己相似の関係にあることをいう。この関係は自然界 においても雲や海岸線、河川の形状に見ることが出来る。

釧路湿原は、さまざまな制約によって地下水位の観測 点が限定されており、限られた観測点から湿原全体の地 下水流動特性を把握する事は非常に困難である。そこで、 本論文では地下水位変動量を周波数に対する変化として 捉え、そこにフラクタルの特性を見出す。

3. ゆらぎとフラクタル次元

解析を進めるにあたり、地下水位変動量がフラクタル 特性を示すか否かについて検討する必要がある。フラク タル特性を示す根拠の一つに、ゆらぎという概念があり 以下の式で表される。

$$S(f) = 1/f^{\beta} \tag{1}$$

ここに、*S(f*)はパワースペクトル、*f*は周波数、 はス ペクトル数を示す。式(1)は、パワースペクトルを周波 数の逆数で表したものであり、1/*f* ゆらぎと称するもの である。上式の両辺に対数をとりグラフにしたものを**図** 1 に示す。スペクトル 分布が同図のように直線 関係となるとき、地下水 位変動量は全体と部分に おいて自己相似の関係に あることから、フラクタ ルの特性を示すことを意 味している。また、スペ クトル数 は同図において うた関係式が成立する²

 $D_{\rm F} = 2.5 - 0.5\beta$

スペクトル分布

クトル数 は同図において傾きを表しており、以下のような関係式が成立する²⁾。

ここに、 D_F はフラクタル次元を示す。フラクタル次元 には(1 D_F 2)の関係があることからの範囲は(1 3)となる。

上式より、フラクタル次元 *D_F* が大きい場合、スペク トル数 は小さくなり、図 1においてパワースペクト ル *S(f)*の取り得る範囲が小さくなる。これは、現象のラ ンダム性が大きくなることを示しており、フラクタル性 を用いた推定を行うに際して、その精度が低くなること を示している。

釧路湿原の地下水位変動量が小領域、及び大領域にお いて同一のスペクトル分布となれば、フラクタル的性質 を持つ事となり、小領域の性質を大領域に拡大すること ができる。

4. スペクトル解析

スペクトル解析とは、地下水位の変動成分を定式化し 周波数による変化として表す事である。データからパワ ースペクトルを求めるものとして様々な手法が提案され ているが、本論文では FFT 法を用いる。

釧路湿原における地下水位の観測データを用いてスペ クトル解析を行い、スペクトル数及びフラクタル次元を 求め、地下水位変動量のフラクタル性について検討する。 地下水位変動量のとり方は図 2 に示す任意の 8 方向を 用いた。スペクトル解析によって得られたスペクトル分 布図(方向1のみ)を図 3 に示し、スペクトル数とフ ラクタル次元、さらに実測値と回帰直線との相関係数を 表 1 に示す。同表から、8 方向でフラクタル次元、及 びスペクトルはほぼ等しい値となり、全ての方向におい て地下水位の変動量が、距離及び方向性に依存せずにフ ラクタルの特性を示していることがわかる。また、8 方 向において実測値と回帰直線との相関係数は、0.91 と大 きく、いずれも直線との高い相関性を示している。

図-2 地下水位観測点と解析

図-3 方向1におけるスペクトル分布

表 1 各方向のスペクトル数とフラクタル次元

方向	スペクトル数	相関係数	フラクタル次元
(1)	2.77	0.93	1.12
(2)	2.39	0.95	1.31
(3)	3.19	0.86	0.91
(4)	3.01	0.87	1.00
(5)	2.85	0.95	1.08
(6)	2.88	0.92	1.06
(7)	2.72	0.90	1.14
(8)	2.69	0.92	1.16
平均	2.81	0.91	1.10

5. 数值模擬地盤

釧路湿原の地層構造は非常に複雑であり、地下水位分 布、流向・流速分布、および透水係数の分布はランダム に変化していると考えられる。そこで、観測データによ る地下水位変動量がフラクタルの性質を持つことを踏ま え、透水係数の空間分布に関する理論的考察を行い、そ れに基づく2次元の数値模擬地盤を作成する方法を適用 する³⁾。

まず透水係数が水平方向に変化している地盤について 考える。このとき、各層の断面積が一定であるとすると、 流量 *Q* に関する連続条件より各層中を通る流速 *v*_xが等しくなる必要があるので以下の式が成り立つ。

$$Q = v_x = k_x \left(\frac{dh}{dx}\right) \tag{3}$$

ここで、k_xは等価透水係数、dh/dx は平均動水勾配で ある。全層の損失水頭は各層の損失水頭の和で表すこと ができるので、各層の間隔を *d_i*とすると次のような式が 得られる。

$$\left(d_{1}+\cdots+d_{i}+\right)=d_{i}\left(\frac{dh}{dx}\right)_{d1}+\cdots+d_{i}\left(\frac{dh}{dx}\right)_{di}$$
(4)

以上より、式(3), (4)から等価透水係数 k_xは、

$$k_x = \frac{n}{\sum \frac{1}{k_x}} \tag{5}$$

となる。この等価透水係数の性質を利用し、短形領域を 分割していくことで数値模擬地盤を作成する方法につい て検討する。

釧路湿原は複雑な地層から成るため、図-4 に示すように短形領域の透水係数に x,y 方向の異方性を持たせる。 次に、短形領域を4個の要素に分割し、さらにそれぞれの領域に異方性を持たせる。このとき、式(3)より次のような関係が成り立つ。(簡略のため X 方向についてのみ示す。)

$$K_{Ax}^{1} = \frac{2K_{1x}^{1} \cdot K_{2x}^{1}}{K_{1x}^{1} + K_{2x}^{1}}$$
(6)

$$K_{Bx}^{1} = \frac{2K_{3x}^{1} \cdot K_{4x}^{1}}{K_{3x}^{1} + K_{4x}^{1}}$$
(7)

$$K_{x}^{0} = \frac{K_{Ax}^{1} + K_{Bx}^{1}}{2} = \phi$$
(8)

ここに、*K* は透水係数、 は短形領域における X 方向 の等価透水係数を示す。ここで、透水係数の不均質性を 表す無次元確率変数として _x, _x, _xを次式のよう に導入すると、

$$K_{1x}^{1} = \alpha_{x}\phi \tag{9}$$

$$K_{4x}^{1} = \beta_{x}\phi \tag{10}$$

$$K_{Ax}^{1} = \gamma_{x}\phi \tag{11}$$

となり、式(6)~(8)より次のように表すことができる。

$$K_{3x}^{1} = \frac{\alpha_{x} \cdot \gamma_{x}}{2\beta_{x} + \gamma_{x} - 2}\phi$$
(12)

$$K_{2x}^{1} = \frac{(2 - \gamma_{x})\beta_{x}}{2\beta_{x} + \gamma_{x} - 2}\phi$$
(13)

$$K_{Bx}^{1} = (2 - \gamma_{x})\phi \qquad (14)$$

このとき、、の制約条件は(11) > 0,(14) > 0より、

$$0 < \gamma_x < 2 \tag{15}$$

となり、 _× ,	_x の制約条件は(12) > 0	,(13) > 0より、
$\alpha_x > \gamma_x/2$	$\beta_x > (2 - \gamma_x)/2$	(16)

ここで、

$$\alpha_{x}^{'} = \frac{\alpha_{x}}{\gamma_{x}} , \beta_{x}^{'} = \frac{\beta_{x}}{2 - \gamma_{x}} , \gamma_{x}^{'} = \frac{1}{\gamma_{x}}$$
(17)

とおくと、 _x, _x, _x, _xが確率変数であるため '_x, '_x, '_xも確率変数となり制約条件は、

$$\alpha_x > 0.5$$
 , $\beta_x > 0.5$, $\gamma_x > 0.5$

となる。さらに、式(6)より $_x$, $_x$, $_x$ は以下の どちらかの値を取り得る。

$$\alpha_{x}^{'} = \alpha_{xm}^{'} \quad or \quad \alpha_{x}^{'} = \alpha_{xm}^{'} = \frac{\alpha_{xm}^{'}}{2\alpha_{xm}^{'} - 1}$$

$$\beta_{x}^{'} = \beta_{xm}^{'} \quad or \quad \beta_{x}^{'} = \beta_{xm}^{'} = \frac{\beta_{xm}^{'}}{2\beta_{xm}^{'} - 1}$$

$$\gamma_{x}^{'} = \gamma_{xm}^{'} \quad or \quad \gamma_{x}^{'} = \gamma_{xm}^{'} = \frac{\gamma_{x}^{'}}{2\gamma_{x}^{'} - 1}$$
(18)

以上より式(9),(10),(12),(13)の値を得ることができ、 xm, xm, xmの確率密度関数を、平均値 µ = 1, 標準偏差 xm(m: xm, xm, xm)の片側正規分 布に従うものとして次式のように仮定する。

$$P(\chi_m) = \frac{1}{\sigma_{zm}\sqrt{2\pi}} \exp\left(-\frac{\left(\chi_m - \mu_{zm}\right)}{2\sigma_{zm}^2}\right) \qquad (\chi_m \ge 1)$$
(19)

また、確率変数 mは、²検定を行った一様乱数をボ ックス・ミュラーの方法により正規乱数に変換し決定す る。この時、確率変数の分散 , , を表 2 に 示す4ケースに変化させ数値模擬地盤を作成する。また、 異なる乱数系列をそれぞれ 15 回発生させ計 60 パターン の数値模擬地盤を作成した。各ケースごとに作成した数 値模擬地盤を、ここでは乱数系列1のものについて図 5 に示す。

同図において透水係数の分布について比較すると、×, y方向共にばらつきが大きくなっていることが認められ、 透水性も両方向共に減少している。また、が大きい ケース2はy方向のばらつきが大きく、等価透水係数は 両方向共に減少しており、特にy方向の減少幅が大きい。 逆に ,が大きいケース3は×方向のばらつきが大 きくなっており、y方向の透水性が増加している。

これらの結果より、 , , の値、および乱数 系列の変化により透水係数の分布はさまざまに変化し、 無限数の数値模擬地盤を作成することが可能となる。

表 2 各ケースの標準偏差							
	ケース1	ケース2	ケース3	ケース4			
,	0.2	0.2	0.4	0.4			
	0.2	0.4	0.2	0.4			

ケース1

図 5 乱数系列1の各ケースにおける透水係数

6. 数値模擬地盤を用いた地下水位解析

作成した 60 パターンの数値模擬地盤から平面二次元 定常被圧地下水流の有限要素解析を行う。

解析領域は、図 2に示す破線内の一辺4kmの正方形 領域ABCDとした。境界条件には、解析対象領域の境界 付近に存在する8地点において、観測データがそろって いる2002年2月15日~2002年10月24日までの252日 間の平均地下水位を用い⁴⁾、赤池情報量基準(AIC)に よってトレンド多項式を求め、境界における地下水位を 決定した⁵⁾。この境界条件は全ケース共通とし、60パタ ーンの数値模擬地盤を用いて地下水位解析および流向・ 流速の推定を行った。地下水位分布図を図 6、流向・ 流速分布図を図 7に示す。

図 6 から、地下水位の分布は右から左に向けて高く なっており、右の地下水位の低い部分は透水係数の標準 偏差が大きいほど範囲が狭くなっている。また、ケース 2とケース3から が大きい場合、地下水位の等高線 が複雑な形状になった。図 7の流速は、約8.5m/day~ 17m/day の範囲で変化し、やはり地下水位分布の高い左 から右に向かう流れが卓越しており、右端では一部逆に 向かう流れが見られる。乱数系列の違いにより流れ方が 異なり、透水係数の標準偏差が大きいほど流速の早い部 分と遅い部分の差が大きくなっている。

以上より、透水係数の標準偏差を変化させた数値模擬 地盤により地下水位分布及び、流向・流速分布に変化が 見られ、さまざまな地下水の流れを表すことが可能であ る。

図 - 6 乱数系列1の各ケースにおける 地下水位分布図

図 - 7 乱数系列1の各ケースにおける 流向・流速分布図

7. 解析地下水位変動量におけるフラクタル特性 解析手法としては、前章で得た地下水位データを用い 4. で示した解析方法を適用した。全60 パターンのフラ クタル特性の中で、最も観測データによるスペクトル分 布と近い値となったものはケース4の乱数系列1であり 図 8 に示す。同図から実測によるものと解析によるも ののスペクトル数は共に2.72 となり、同じフラクタル次 元を示している。

図 - 8 観測データと解析データの フラクタル分布図

8. 結論

釧路湿原において、観測地下水位の変動量からフラク タルの特性を見出すことができた。さらに、複雑な地層 に着目し、観測データを必要としない60パターンの数値 模擬地盤から有限要素法による地下水解析を行い、地下 水位の分布及び流向・流速を推定した。最後に、数値模 擬地盤から求めた解析データによるフラクタル特性と観 測データのフラクタル特性を比較する事により、釧路湿 原の地質特性を考慮した数値模擬地盤をケース4の乱数 系列1の場合と決定し、解析領域における地下水パラメ ータを把握することができた。

今後の研究方針は、釧路湿原の実現象をさらに詳しく 分析し、実際の地盤に近い数値模擬地盤の作成を検討す る予定である。

9. **参考文献**

- 1) 釧路湿原自然再生協議会:釧路湿原地下水データ,2003.
- 2) 脇田英治,松尾稔:不同沈下のフラクタル的性質とそれ を応用した沈下推定,土木学会論文集 No.529,1995.
- 3) 齋藤雅彦,川谷健:透水係数の空間分布に関する理論的 考察,土木学会論文集 No.645,2000.
- 4) 前出1)
- 5) 赤池弘次他:統計学特論 情報量基準と統計モデル・統 計的社会調査法 - ,財団法人放送大学教育振興会,1987.