音響モニタリングシステムを用いた鋼橋の損傷同定について

Study on damage identification of steel bridge superstructures by using of sound monitoring system

北海道大学大学院工学研究科	正員	小幡卓司 (Takashi Obata)
北海道大学工学部土木工学科	学生員	葛西祐介 (Yusuke Kasai)
北海道大学大学院工学研究科	F会員	林川俊郎 (Toshiro Hayashikawa)

1.まえがき

わが国では、第二次世界大戦後の国土の復興とその後の 高度経済成長において、多数の社会基盤施設が建設されて きた。これらの基盤施設は、今日では壮年期にあり、その 老朽化は今後急速に進むことが予測されている。従来では、 新たな道路ネットワークの形成等の開発的資本投資も行 われてきたが、近年の投資余力の減少や工事に起因する交 通規制による社会的損失、あるいは環境への意識の高まり から、今後は維持管理ならびに補修・補強を強化して、既 存橋梁の長寿命化の実現が大きな課題となっている¹⁾。

供用中の橋梁における健全度に対する現状把握は、これ らを実現するための重要な要素技術となっているが^{2),3)}、 構造物の損傷・健全度に対する工学的評価・判定は専ら専 門技術者の判断に委ねられる場合が大半である。しかしな がら、我が国においてはこのような技術者養成の教育シス テム等も整備されていないため、今後急激に高まるであろ う人的ニーズへの対応は、困難であると判断せざるを得な い。よって、この問題解決には橋梁の損傷度・健全度診断 に用いるモニタリングシステムを構築し、測定から診断ま で一貫して行える手法を確立することが重要であると考 えられる。この有効な解決方法のひとつとして、振動・音 響モニタリングで得られたデータから、構造特性を逆解析 的に求めて損傷を同定しようとする手法が期待されてい る^{2~13)}。近年では振動・音響の計測は計測装置あるいは解 析技術の著しい進歩から、手軽に高速かつ高精度で実施す ることが可能となってきた。これらにより、従来では定量 的な把握が比較的難しかった、減衰比、位相あるいは局部 振動に起因するモード形状等の情報も詳細に得られるよ うになりつつある。

以上を踏まえて、著者らは鋼橋の損傷同定あるいは健全 度診断に用いるために、鋼構造物内を伝播する波動を対象 とした音響モニタリングならびにデータ解析手法につい て検討を行ってきた¹⁰⁻¹³⁾。本研究においては、著者らが 開発した音響モニタリングシステムについて、様々な条件 下(損傷位置、加振位置、実験供試体の相違等)における 測定と解析を行い、本研究において提案する手法の妥当性、 実用性等に関して検討を加えることを目的とする。

具体的には、まずダイナミックマイクをセンサーとした、 Digital Audio Interface と PC からなる最大 8Ch までのデータ 収録が可能な音響モニタリングシステムを用いて、2 種類 の実験供試体に対して仮想的な損傷を与え、構造物内を伝 播する音響の測定を行った。次に、得られたデータのサウ ンドスペクトログラムを算出して、周波数特性を把握し、 その結果を時系列の画像データとして記録して、フラクタ ル次元解析を行った。これらのサウンドスペクトログラム

写真-1 モニタリングシステム

あるいはパラメータとしてのフラクタル次元について、健 全・損傷状態に関して比較検討を行い、鋼橋の損傷同定あ るいは健全度診断における音響モニタリングデータおよ びその解析手法適用の有効性・実用性等に関して考察を加 えた。したがって、本研究はこれらの結果を報告するもの である。

2.音響モニタリングシステム

本研究で構築したモニタリングシステムは、写真-1 に示 すようにマイクロフォンを利用したセンサー、Digital Audio Interface ならびに PC からなるものである。まずマイ クに関しては、単一指向性、感度-58dB±2dB(1kHz)のダイ ナミックマイクを、40×40×30の鋼製の台座に埋め込み深 さ 5mm で固定し、周囲からのノイズの混入を極力防止す るため発泡スチロールのカバーを装着したものを用いて いる。図-1は入力周波数に対するセンサーとしてのマイク ロフォンのゲインである。また、Digital Audio Interface は Roland 社製 DA-2496 を用いている¹⁴⁾。DA-2496 は、8Ch のオーディオ同時入出力に対応しており、8系統の異なる 音響データを個別に録音可能である。AD 変換は 24bit フォ ーマットで、サンプリング・レートは 22.05~96kHz に対応 しており、非常な高音質のデジタル録音 / 再生を実現でき る。PCとの接続はPCIバスを介して行われるが、16Chま で拡張することも可能であり、ある程度広い用途に適用す ることができると思われる。さらに、計測用アプリケーシ ョンには、同じく Roland 社製の SONAR 2.0 を用いること

写真2 供試体1

写真-3 供試体 2

表-1 部材諸元(供試体1)

部材	1 x h x b(mm)	
主桁	平鋼	2500×65×22
横桁	平鋼	400×65×22
横構	平鋼	1120×21×4

表-2 部材諸元(供試体2)

部材	$l \times h \times b(mm)$		
主桁	平鋼 4800×125×60		
横桁	平鋼 600×125×60		
横構	L型鋼 1200×25×25×3		

とした¹⁴⁾。これは本来音楽製作用ソフトウェアであるが、 チャンネル毎の個別録音が可能なこと、24bit フォーマット ならびに96kHzまでのサンプリング周波数に対応している こと、また MIDI や wave、あるいは MP3 等の各種ファイ ル形式での保存もサポートしているため、本研究の範囲で は十分な機能を有していると判断される。

3.実験ならびに解析手法

3.1 実験方法

本研究で用いた実験供試体は、橋梁構造物の横構と主桁 1パネル分を模した部分模型(以下、供試体1と称す)と、 実橋全体(以下、供試体2と称す)を模した供試体の2種 類を用いている。写真-2に供試体1を、写真-3に供試体2 を示す。また表-1に供試体2諸元を、表-2には供試体2諸 元を示す。なお、仮想的な損傷状態は、格点における高力

表-3 実験ケース番号

ケース No	供試体 No	仮想損傷位置
1	1	ボルト A
2	1	ボルト A'
3	2	ボルト2(加振点側)

ボルトの締め付けトルクを変化させることによって行った。すなわち、240Nmを健全状態とし、40Nm毎に200Nm~0Nm(がたつかない程度に手で締め付け)まで変化させ 測定を実施した。

実験方法は、まず供試体1では支間中央に鋼球による打 撃をそれぞれの主桁に与え、図-2のボルトAのトルクを変 化させ測定を行う。次に横構をボルトA'およびB'に連結 し直し、それぞれのフラクタル次元が同様の傾向を有する か否か等の検討を行った。また、供試体2においては、供 試体1と同様に損傷位置とフラクタル次元の変化について の検討に加え、打撃位置と損傷までの距離、あるいはセン サー配置と損傷位置の関係等についても考察が可能とな るような測定を行った。図-3に供試体2のセンサー配置を、 表-3に実験ケースを示す。

3.2 解析手法

本研究においては、音響特性等の把握のための解析手法 には、フーリエスペクトルならびにサウンドスペクトログ ラムを用いている。サウンドスペクトログラムとは、音響 スペクトルの時間的変化を、図形の濃淡によって視覚的に 判断できるように表示したものであり、色の濃い部分がス ペクトル成分の大きい部分を示している¹⁵⁾。図-4 にこれを 示す。計算方法は、デジタル音響信号に対して適当なデー タ点数に分割して窓関数を適用し、離散時間フーリエ変換 を行ってこれを表示するものである。時間の分割は、任意 に設定することが可能であるが、フーリエ変換を行うデー タ長の半分程度に設定するのが一般的である。本研究では、 フーリエ変換を行うデータ長を1024 個(約 0.023 秒)時 間間隔をおよそ 0.011 秒に設定し、窓関数には Kaiser ウィ

ンドを適用して計算を行った¹⁶⁾。なお、スペクトルと色調の関係については RGB の色度で表現され、スペクトルが 最大の場合(本研究の解析条件では絶対値で約8.0)赤(R) の255、最小の際(スペクトルがほぼ0)のときは青(B)の 255で表される。

次に、音響データあるいはその他の時系列データにおけ るフラクタル次元の応用に関して言及すると、例えばこの ようなデータのパワースペクトル等の応答特性において、 そのピークを結ぶ曲線がべき分布を示す場合が多く知ら れており、これを 1/f ノイズあるいは 1/f ゆらぎと称してい る。一般に、この 1/f ノイズは時系列データのフラクタル 性を表現しており、時間軸で応答を表した場合の2次元的 なフラクタル次元と同義である。この 1/f ノイズは楽器等 の音響特性を示すような場合に用いられることがしばし ばある。本研究では、画像データとしてのサウンドスペク トログラムに対して、波形としての2次元的なフラクタル 性を求めた 1/f ノイズに加えて減衰特性も含めた形で 3次 元的なフラクタル次元を求めることにより、その変化を捉 えて損傷の影響を評価しようとするものである。フラクタ ル次元の算出に際しては、写真等の画像データに高い適用 性を有するボックスカウンティング法を採用して解析を 行った。この方法は、まず画像データに対して正方形の被 覆を細分化して有意な図形パターンの乗っている被覆の 個数を数える。被覆の大きさを変化させた場合の上記の個 数を両対数グラフにプロットし、その傾きからフラクタル 次元を得るものである。

ここで、図形 X が 1 辺 d の正方形 N(d)個で覆われている とし、ある定数 k_0 および正の定数 μ において、任意の 1 辺 に対し正方形の個数 N(d)を測定すると、N(d)と d^{k0} の間に 比例関係、

$$N(d) = \mu \cdot d^{-k_0} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$$

があれば、式(1)の自然対数をとることにより、

 $\log N(d) = -k_0 \log d + \log \mu \cdot \cdot \cdot \cdot (2)$ となり、 log*N*(*d*)と log*d*の関係は、

 $y = -k_0 x + \log \mu \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (3)$ のような直線の式で示される。1 辺の長さ $d \ge 4$ の正方形の個数 N(d)を測定したとき、 $\log N(d) \ge \log d$ の関係との間に、傾き- k_0 の直線の関係を有していれば、 k_0 は図形 X の正方形の細分によるフラクタル次元と定義できる。

以上より、本研究では損傷レベルに対する定量的な評価 を試みるため、サウンドスペクトログラムを時系列の画像

データとして記録し、そののフラクタル次元を求めること により、その変化を捉えて損傷位置の同定等を行うパラメ ータとして用いている。

4.実験・解析結果およびその考察

まず、供試体1についてはケース1およびケース2を比 較すると、損傷を与えたボルト A および A'のマイクにおけ る結果では、マイクの設置状況の差異などによって絶対値 に差が発生しているものの、損傷の増大に伴ってフラクタ ル次元が減少傾向を有することがわかる。健全状態である 240Nm から 120Nm 程度までは、フラクタル次元はほぼ-定となっているが、損傷がさらに進行した 80Nm、40Nm、 手締め状態ではフラクタル次元が減少しており、実際に2 次部材等に生じる損傷を考慮すれば、十分に損傷の影響を 把握できるものと推定できる。また、Aに比べて A'の手締 め状態のフラクタル次元が40Nmよりも著しく減少してい るのは、ケース2の手締めの程度が弱かったためと考えら れる。一方、加振点に近いボルトBおよびB'に設置された センサーのフラクタル次元では、明確な減少傾向は確認で きず、ばらつきが目立つ結果となった。これは、加振点に 近く損傷箇所から離れているために、ボルト A および A' に与えたボルト弛緩による損傷の影響を捉えにくかった ものと考えられ、その結果フラクタル次元にばらつきが生 じたものと思われる。

次に、図-6に供試体2についての各点におけるフラクタ ル次元の変化を示す。供試体1で確認されたように、損傷 箇所の近傍に設置されたセンサーでは120Nmから80Nm でフラクタル次元が減少し始め、手締め状態まで減少する 傾向を有している。また損傷箇所の近傍以外での測定点で は、損傷が最大となる40Nmから手締め状態での減少はい くつかの点で確認できるが、平均的にはばらつきが大きく 生じる結果となった。とりわけ加振点に近い測点5や損傷 箇所からかなり離れた測点7、8ではばらつきが目立つ結 果となっている。

以上の実験・解析により、フラクタル次元解析を適用す ることで、サウンドスペクトログラムに見られる周波数応 平成17年度 土木学会北海道支部 論文報告集 第62号

答などの時間的な変化を数値的に把握することが可能で あるものと考えられ、社会基盤鋼構造物に対する損傷度、 健全度に定量的な評価に用いることも十分期待できると 思われる。また、損傷箇所の近いセンサーほど損傷の影響 を捉えやすいと考えられることから、損傷箇所の位置同定 を行うこともある程度可能であると推定される。

5. あとがき

以上のように、本研究は鋼橋の損傷同定あるいは健全度 診断に用いるための、音響モニタリングシステムについて 検討を加えたものである。

実験結果からは、損傷箇所に近い測点において、フラク タル次元は損傷の増大に伴って減少傾向を有することが 判明した。この結果より、鋼構造物に対する損傷度、健全 度の定量的な評価に用いることも十分期待できると思わ れる。また、損傷箇所から離れた測点においては、フラク タル次元にばらつきが目立つ結果となったが、損傷箇所に 近いほど上述の減少傾向が顕著となっており、このことか ら、損傷箇所に近いほど損傷の影響を捉えやすいと考えら れ、損傷箇所の位置同定を行うこともある程度可能である と推定される。

以上の結果から、社会基盤施設の音響モニタリング結果 に対してフラクタル次元解析を適用すれば、従来の手法よ りも、より詳細な損傷度評価に十分適用することが可能で あるものと考えられ、今後さらに研究を行うことにより、 その有効性あるいは実用性も十分に期待できると思われ る。

【参考文献】

- 1) 西川和廣:道路橋の寿命と維持管理,土木学会論文集, No.501/I-29, pp.1-10, 1994.
- 2) 土木学会:橋梁振動モニタリングのガイドライン,土 木学会,2000.
- 近藤一平,濱本卓司:振動台実験のランダム応答デー タを用いた多層構造物の損傷検出,日本建築学会.構造 系論文集,第473号,pp.67-74,1995

- 4)加藤雅史,高木保志,島田静雄:PC橋梁の破壊に伴う 振動性状の変化に関する実験的研究,土木学会論文集, No.341, pp.113-118, 1984.
- Kato, M. and Shimada, S. : Vibration of PC Bridge during Failure Process, Journal of Structural Engineering, ASCE, Vol.112, No7, pp1692-1703, 1986
- 6) 山崎智之,大島俊之,大西功基,三上修一:局部振動 による鋼材接合部の損傷評価に関する研究,応用力学 論文集, Vol.5, pp.837-846,2002
- 7) 阿部雅人,藤野陽三,長山智則,Hong Vu-Manh:振動 計測に基づく非比例減衰系の非反復損傷同定法,応用 力学論文集,Vol.5,pp.855-862,2002
- 宗像康一,三好敏晴,濱本卓司:2 軸偏心を有する多 層建築構造物の鉛直・水平2段階損傷検出~その2振 台実験による損傷検出の検証~,日本建築学会大会学 術講演梗概集,pp.403-404.1998.
- 9) 西村昭,藤井学,宮本文穂,加賀山泰一:橋梁の損 価における力学挙動の有効性,土木学会論文集, No.380/I-7, pp.355-526, 1987.
- 10) 小幡卓司,植田康平,林川俊郎,佐藤浩一:鋼橋の損 傷同定における音響データの適用性に関する一考察, 鋼構造年次論文報告集,第8巻,pp.611-616,2000.
- 小幡卓司,植田康平,林川俊郎,佐藤浩一:1/f ノイズ の分析に基づいた鋼橋の損傷同定に関する一考察,土 木学会北海道支部論文報告集,第 57 号,pp.104-107, 2001.
- 小幡卓司,植田康平,林川俊郎,佐藤浩一:1/f ノイズ 特性に基づいた鋼橋の損傷同定に関する研究,鋼構造 年次論文報告集,第9巻,pp.569-574,2001
- 小幡卓司,植田康平,宮森保紀,林川俊郎,佐藤浩一: 鋼橋の損傷同定における音響モニタリングの適用に関 する基礎的研究,応用力学論文集,Vol.5,pp.827-836, 2002.
- 14) ローランド・ホームページ,製品情報,http://www.roland.co.jp/products/index.html
- 15) 吉井貞熈: デジタル音声処理, 東海大学出版会, 1985.
- 16) The Math Works Inc. : MATLAB Signal Processing Toolbox User's Guide, サイル・ネットシステム株式会社, 1999.