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1. Introduction 

Cylindrical shells are extensively used in engineering 
fields in the form of structural components for storage tanks, 
pressure vessels, processing equipment, water ducts, 
subsea/ground pipelines, and in other applications. The 
strength, lightness, and spatial properties of the shells have 
been recognized as major advantages over other types of 
structures. On the other hand, the shells exhibit complex 
behaviors related to their characteristics in the dynamic states. 
The problems are becoming more complex when considering 
the effects of foundations surrounding a shell and the 
interactions between fluid and shell. 

Lakis et al.[1-2] have developed the hybrid finite 
element formulation for circular cylindrical shells based on 
the analytical shape functions which are derived from 
governing equations of shell. The analysis of whole buried 
pipeline subjected to sinusoidal seismic wave, differential 
settlement, and dislocation of ground has been investigated 
by Yang et al.[3] using the shell finite element. Paliwal et 
al.[4-5] have studied the free vibrations of the whole buried 
cylindrical shells in Winkler and Pasternak foundations by 
direct solution to the governing equations of motion. In the 
paper, the elastic foundations are distributed uniformly both 
in the circumferential and in the longitudinal directions. 
However, cylindrical shells are generally laid on elastic 
foundation, so that the foundation only covers certain parts of 
the shell in the circumferential direction. This leads to more 
complex problem. Amabili et al.[6] have investigated the free 
vibrations of cylindrical shell simply supported at both ends 
with a non-uniform elastic foundation in the circumferential 
direction based on the Rayleigh-Ritz method. The elastic 
foundation has to be assumed distributed uniformly over the 
whole cylinder length in the longitudinal direction. Gunawan 
et al.[7-8] have studied the static and free vibration of 
cylindrical shells partially buried in the elastic foundation 
based on the semi-analytical finite element method where the 
simple polynomials were used as shape functions. Free 
vibrations of fluid-filled cylindrical shells on elastic 
foundations using the analytical shape functions have been 
investigated by Gunawan et al. [9]. 

This paper presents the dynamic response of cylindrical 
shells partially buried in elastic foundations under radial 
impact loads by means on the semi-analytical finite element 

method. The shell is discretized into cylindrical finite 
elements where the analytical shape function based on the 
governing equations of the empty is used. The foundation is 
represented by elastic radial springs. Empty and fluid-filled 
shells are considered here. The internal fluid is assumed to be 
stationary. The effects of the spring stiffness and enclosed 
angle on dynamic response of the system are investigated. In 
addition, the dynamic load factors of empty and fluid-filled 
shells for different impulse duration. 
 
2. Model and formulation 

The structure is an isotropic thin elastic circular 
cylindrical shell with Young’s modulus E, Poisson’s ratio υ, 
radius of the middle surface R, thickness h, and length L. The 
radial spring coefficient is denoted by Kw. In the analysis, the 
spring coefficient is assumed to be constant along the 
enclosed arc. The angle that define the enclosed arc is 
denoted by ϕ. The shell is subjected to a localized radial 
impact load Q(t) = q f(t) in the radial direction, where q is the 
magnitude of surface load and f(t) is the time-varying 
function. The load is located symmetrically about the 
midspan. The geometry of the structure, loading distribution, 
and the reference directions are shown in Fig. 1. The 
foundation and load are distributed symmetrically about the θ 
= 0 axis. 
 
 
 
 
 
 
 
 

Fig.1. A shell subjected to a localized radial impact load. 
 

The displacement of a point on the middle surface in the 
axial, circumferential, and radial directions is indicated by u, 
v, and w, respectively. Due to the symmetry of the problem, 
the displacements in the spatial coordinate can be defined as 
follows: 
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where m is a typical circumferential wave number. The 
derivation of the stiffness and mass matrices of the shell and 
stiffness matrix of the foundation is explained in details in 
the paper by Gunawan et al. [9], and therefore is not given 
here.  

The fluid is assumed to be incompressible, invicid, and 
the fluid motion is irrotational so that the flow can be 
described by a velocity potential, Φ, which satisfies the 
following Laplace equation: 
 

(2) 
 
The deformation potential φ is related to the velocity 
potential Φ by 
 

(3) 
 
The contact condition at the shell-fluid interface is defined by  
 

(4) 
 
where * ( , ) i tw w x e ωθ= . Solution of the Laplace equation 
satisfying additional fluid boundary conditions at the ends of 
the shell (φ = 0 at x = 0, L) and regularity condition (finite 
value at the axis of the shell) can be written as follows: 
 

(5) 
 
where k is the half-wave number and Im is the m-th order 
modified Bessel function of the first kind. Dmk are unknown 
coefficients which can be determined by using (4) and 
employing the orthogonality properties of the function with 
respect to x. Once the potential is obtained, the hydrodynamic 
pressure, p, acting on the wall of the shell can be determined 
from the linearized Bernoulli equation and is given by 
  

(6) 
 
where Ri = R – h/2 is inner radius of the shell and ρL is 
density of the fluid. By using the finite element method, the 
mass matrix of the fluid can be obtained readily. 

By neglecting any physical damping effects, finally, the 
resulting governing equation of the system under 
consideration is given by 
 

(7) 
 
where M is composed of mass matrices of the shell, MS and 
of the fluid, ML. K is composed of stiffness matrices of the 
shell, KS and of the foundation, KF, and F(t) is the load 
vector. ML reduces to a zero matrix for cases corresponding 
to empty shells. The spatial distribution of the load is handled 
by the Fourier series and an element mesh strategy. (7) is 

solved by using the well-known Newmark integration 
scheme. 

The natural frequency ω is non-dimensionalized by Ω = 
ω /ω0 where ω0

2 = E / (ρSL2(1–υ 2)). For all numerical results 
presented here, the computations used the following 
parameters: υ = 0.30, ϕ1 = ϕ2 = ϕ, ε /L = 0.05, and ψ = π/36. 
Based on the convergence studies which are not shown here, 
the total number of finite elements, NS = 40 and the total 
number of circumferential waves, M = 40 are used through 
out. For convenience, the time coordinate is non-
dimensionalized by τ = ω0 t. For the time integration scheme, 
the following Newmark’s parameters are used: β = 0.25 and γ 
= 0.50. The time step is taken to be ∆τ = 0.005. The initial 
conditions for displacement and velocity are assumed to be 
zero. Unless otherwise stated, a unit step function load with 
magnitude q is used. The displacements at coordinates 
(L/2,0), (L/2,π/2), and (L/2,π) are denoted by subscript B, S, 
and T (Fig. 1), respectively. The total stress in the l (l = x or 
θ) direction is denoted by σl. 
 
3. Numerical results 

This section mainly describes the response of empty 
shells. In the present study, the shell is assumed to be simply 
supported at both ends. The effects of foundation parameters 
such as spring stiffness and enclosed angle are also 
investigated. The latter part discusses the response of fluid-
filled shells, while results for empty shells are simultaneously 
presented for comparison. 

First, one investigates how the response of the shell is 
affected by the spring stiffness. Fig. 2 shows the radial 
displacement response of the shell for different values of 
KwL/E. The figure reveals that the presence of the foundation 
reduces the magnitude of wB drastically. However, the largest 
absolute magnitude for the radial displacement is found at T. 
From Fig. 2b, one can find that wT is less influenced by the 
changes in radial spring stiffness, KwL/E.  

Secondly, one investigates the ratio of the maximum 
response for displacements and total stresses with variations 
in ϕ. The results are presented in Fig. 3, where d stands for v 
or w, while d’ and σ’ are the displacement and stress of shell 
in absence of the foundation. At early increment of ϕ, wB is 
directly influenced by ϕ. Fig. 3a shows that wB decreases 
about 90%. However, for ϕ > 30 degree, further increase in ϕ 
has no significant influence on wB. Similar to wB, wS 
decreases gradually as ϕ increases. It can be seen that the rate 
of decrement for wS is slower than that for wB. The same 
figure also suggests that for ϕ < 90 degree,  ϕ does not 
significantly affect wT. It is interesting to note that vS 
decreases as ϕ increases. However, at the end of the curve, vS 
tends to increase. This is due to the existence of the 
foundation on most part of the shell which gives an extra 
confinement so that the shell tends to move vertically. Apart 
from the discussion of the displacements, the stresses at T for  
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Fig. 2. Radial displacement response for different values of KwL/E  
(Empty, υ = 0.30, R/L = 0.20, R/h = 100, KwL/E = 0.003, and ϕ = π/3): (a) at B; (b) at T. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Effect of enclosed angle on the maximum response of displacements and total stresses  
(Empty, υ = 0.30, R/L = 0.10, R/h = 100, and KwL/E = 0.003): (a) displacements; (b) total stresses at T. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Dynamic load factor for displacement and stresses (υ = 0.30, R/L = 0.10, R/h = 100, KwL/E = 0.001, and ϕ = π/3):  
(a) empty, τT = 22.841; (b) full, τT = 53.163 (ρL/ρS = 0.128). 
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different ϕ are given in Fig. 3b. As ϕ increases, both stresses 
increase and then decrease gradually. 
 Finally, one investigates how the impulse duration 
affected the response of the shell. The rectangular impulse 
load distribution in the time coordinate is considered. The 
duration of impulse is denoted by τd. The results are 
presented in terms of dynamic load factor which is defined as 
the ratio of maximum absolute response divided by the 
absolute static solution. Fig. 4 shows the dynamic load 
factors of the displacement and stresses at T for different 
values of τd /τT, where τT is the non-dimensionalized 
fundamental period of the system. Generally for τd /τT ≥ 0.3, 
the dynamic load factor for displacement is larger than the 
dynamic load factors of the stresses. The dynamic load factor 
for σx does not show significant difference from that for σθ . 
Comparing the results for empty and fluid-filled shells, the 
dynamic load factor for displacement at relatively large value 
of τd /τT is found to be around 1.7 for both shells, while the 
dynamic load factors for the stresses range from 1.3 to 1.4. 
The dynamic load factors for empty shells are similar to 
those of fluid-filled shells.  
 
4. Conclusions 

This paper demonstrates the applicability of the semi-
analytical finite element method to the dynamic analysis of 

cylindrical shell partially buried in elastic foundations 
subjected to localized impact loads. First, the response of 
empty shells is presented. The effect of the foundation 
parameters is discussed. Later on, the response of fluid-filled 
shells in terms of the dynamic load factor is examined. The 
results for both empty and fluid-filled shells are given for 
comparison. 
 
The main conclusions of the present study may be 
summarized as follows: 

• The foundation parameters such as the radial spring 
stiffness and enclosed angle influence the response of 
displacement and stresses, especially at parts of the shell 
which are enclosed by the foundation. 

• For thin shells, it is found that increase in the radial 
spring stiffness has no significant effect on the 
maximum response of the displacement on the top edge. 
In this case, the enclosed angle is more pronounced 
especially for ϕ ≥ π/2. 

• The fluid does not influence the dynamic load factor of 
the displacement. However, the dynamic load factors of 
the stresses are slightly decreased by the existence of the 
fluid. Therefore, one may use the dynamic load factor of 
the empty shells for designing shells with internal fluid. 
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