横桁を斜めに配置した曲線2主桁橋の固有振動特性と剛性評価

Natural vibration characteristics and evaluation of stiffness in curved twin I-girder bridges with diagonal cross beams

北海道大学大学院工学研究科	学生員	市川雅也	(Ichikawa Masaya)
函館工業高等専門学校	正 員	平沢秀之	(Hirasawa Hideyuki)
北海道大学大学院工学研究科	フェロー	林川俊郎	(Hayashikawa Toshiro)

1. まえがき

主桁本数を2本とし PC 床版と鋼桁の合成桁として設 計された合成2 主桁橋は部材数の少ないシンプルな構造 を有しており、製作・架設の合理化・省力化を図った橋 梁である。さらに、塗装面積の減少、部材交差箇所の低 減による応力集中・疲労問題も解消、点検業務の容易化 等、ライフサイクルコストの面においても優れているこ とから、今後も建設が推進されていくことが予想される。 更に曲線橋にも適用範囲を広げることを目的とした研究 も見られる^{1、2}。

一般に、鋼桁橋は斜張橋や吊橋よりも風による振動は 起きにくいが、合成2主桁橋は従来の桁橋に比較して縦 長の断面を有しているため、総幅(B)に対する有効高 (D)の比(B/D)が3以下となることが多く、空気力学 的特性の点で問題となる可能性がある³⁾。また、横構が 省略され、基本的に開断面であることから、多主桁橋と 比べてねじり剛性が低い構造であると言える。これまで、 少数主桁橋は支間長50[m]程度での採用実績があり、最近 では80[m]以上の架設事例も見られる。このような状況の 中、今後も少数主桁橋の長スパン化が予想されるが、そ れに伴って固有振動数が低下するため、ねじり振動に関 する十分な検討が必要であると考えられる。特に、ねじ り渦励振については、設計基準風速以下で発生するケー スや大きな応答に起因する初通過破壊・疲労破壊、自動 車との共振による使用性等の問題が生じる可能性があり、 ねじり剛性を向上させることが非常に重要である。

そこで、ねじり剛性を向上させる一つの手段として、 既往の横桁斜め下段配置モデルに端部の横桁をクロスに したものをモデル化した。比較検討のため既往の横桁直 角配置モデルの端部をクロスにしたモデルも作成し、力 学的特性の把握を行った。なお、数値計算には有限要素 法汎用構造解析プログラムMSC/NASTRANを使用する。

2. 解析モデル

図 - 1 は解析対象とする橋梁モデルの平面図と断面図 である。平面図は横桁形式の違いを見やすくするために 床版を省略した状態で表示している。断面図において、 左半分は横桁を主桁の中段に直角配置させたもの、右半 分は下段斜めに配置させたものを示している。支間長は 50[m]、中心角は10°で、主桁と横桁の断面寸法は表 - 1 に示す。主桁の断面は通常の2主桁橋のように、フラン ジ幅を一定とし、フランジ厚のみを変化させた変断面と している。表 - 2 に材料定数を示す。

(a)横桁直角配置モデル

(b)横桁直角配置端部クロスモデル

(c)横桁斜め配置モデル

(d)横桁斜め配置端部クロスモデル

表 - 1 断面寸法 [mm]

B_u		主桁	横桁
$\overset{t_{u}}{}$	B_u	500	300
	t_u	20 ~ 62	25
$t_w \rightarrow \leftarrow \qquad \Xi$	Н	3000	1000
	t_w	24	16
	B_l	800	300
$ \xrightarrow{B_l} $	t_l	24 ~ 72	25

表-2 材料定数

	ヤング係数 <i>E</i> [N/mm ²]	ポアソン比	単位体積重量 w [kN/m ³]
PC 床版	2.9×10^{10}	0.2	24.5
鋼部材	2.0×10^{11}	0.3	77.0

|--|

	鉛直1次固有 振動数 [Hz]	ねじり1次固有 振動数 [Hz]	
横桁直角配置	2.334	4.120	
〃 端部クロス	2.435	4.840	
横桁斜め配置	2.505	5.127	
〃 端部クロス	2.507	5.412	

3. 固有振動解析結果

4つの解析モデルに対して固有振動解析を実施した。 結果を表 - 3に示す。直角配置横桁モデルと斜め配置横桁 モデルを比較すると、鉛直1次振動に関しては、横桁を 斜め配置にすることで若干ではあるが上昇している。こ れは、横桁を直角に配置すると曲げ変形が生じても横桁 に軸力がほとんど働かないが、斜めに配置することで横 桁に軸力が働いて抵抗し、曲げ剛性が高まったためと考 えられる。ねじり1次振動に関しては、斜めに配置する 効果が顕著に現れている。これは、下段に配置された斜 め横桁が床版と併せて擬似箱桁断面を形成したため、ね じりに対して剛性が高まったためと考えられる。

また、それぞれのモデルの端部をクロス横桁にするこ とで若干ではあるが更なるねじり剛性の向上がみられる。

4. 鉛直荷重による主桁の変形

4つのモデルに対して、活荷重(L荷重)を載荷し静 的解析を行った。曲線橋が鉛直荷重を受けると、鉛直方 向にたわむと同時に橋軸直角方向にもねじりを伴いなが ら変位が生じる。図 - 2 はこれらの変位の様子を表した ものである。表 - 4 は4つの解析モデルに対して、支間 中央の断面における両主桁それぞれの上端、下端の変位 をまとめたものである。鉛直変位、水平変位をそれぞれ y,z で表し、添え字は a=内桁上端、b=外桁上端、c=内桁 下端、d=外桁下端を意味している。

直角配置横桁モデルと斜め配置横桁モデルを比較する と、横桁を斜めに配置することで変位を大きく抑えると こが出来ている。更に、内桁と外桁の変位差も小さくな っているので、ねじり変形を抑えることが出来ているこ とも確認できる。

また、クロス横桁の有無で変位を比較すると、直角配 置横桁モデルでは、水平変位を大きく減少することがで きる。また、内桁の鉛直変位減少よりも外桁の鉛直変位 減少の効果が大きいことが確認できる。水平方向の変位

図-3 支間中央断面の変位

表-4 支間中央断面における変位 [mm]

	横桁直角配置		横桁斜め配置		
	クロス	クロス	クロス	クロス	
	無し	有り	無し	有り	
内桁上端 鉛直変位 y _a	17.77	16.82	20.51	20.92	
″ 水平変位 z _a	2.307	1.352	0.125	0.234	
外桁上端 鉛直変位 y _b	30.06	25.51	24.80	24.59	
″ 水平変位 z _b	2.093	1.145	-0.112	-0.002	
内桁下端 鉛直変位 y _c	17.71	16.77	20.46	20.56	
″ 水平変位 z _c	9.454	6.670	2.503	2.475	
外桁下端 鉛直変位 y _d	30.03	25.48	24.76	24.55	
" 水平変位 z _d	10.02	7.127	3.708	3.611	

が減少し、内桁と外桁の変位差が小さくなっている、このことから、横桁をクロスにしたモデルはねじり変形を 抑制する効果があることが確認できる。

斜め配置横桁モデルでは、大きな変位減少は見られな いが、内桁の鉛直変位が増加し外桁の鉛直変位が減少し ているので、ねじり変形が抑えられていることが確認で きる。水平変位に関しては特に大きな変化は見られない。 鉛直荷重を受けたときの、変形の様子を図-4に示す。

5.水平荷重による主桁の変形

5.1 風荷重

風荷重に関しては、道路橋示方書において橋軸直角水 平方向に吹く風による抗力を基本として、これに風速変 動の効果を考慮した風荷重が定められている。ここでは、 風荷重を橋軸に直角な水平荷重として式(1)、(2)により算 出している。

$$p = \frac{1}{2} \rho \cdot U_d^2 \cdot C_d \cdot G \tag{1}$$

図-4 鉛直荷重による変形

(2)

 $P = p \cdot A_n$

ここに、

- *p*:単位面積あたりの風荷重 (kgf/m²)
 - :空気密度 (0.125kgf・s²/m⁴)
- U_d:設計基準風速 (m/s)
- C_d :抗力係数
- G :ガスト応答係数
- P:橋軸方向単位長さあたりの風荷重 (kgf/m)
- A_n:橋軸方向単位長さあたりの有効鉛直投影面積 (m²/m)

本研究では、静的解析を行うので設計基準風速を 40m/s とし、抗力係数はプレートガーダー橋で定められ る値、ガスト応答係数は海上の風を想定した値を用いた。 算出された風荷重を内桁の中央に 5m間隔で集中荷重と して橋軸直角方向に作用させた。

支間中央断面の変位の様子を図 - 5 に、解析結果を表 - 5 に示す。直角配置横桁モデルと斜め配置横桁モデル を比較すると、水平変位が減少しているだけではなく、 斜め配置モデルでは鉛直変位がほとんど見られなくなっ ている。直角配置モデルでは、水平方向から荷重を受け てもねじりを伴いながら変位が生じていたが、斜め配置 にすることで、ねじり剛性が向上したと言える。

これは、斜めに配置された横桁が水平方向からの荷重 に対しては、トラス構造として機能し水平変位を減少さ せ、また、鉛直方向に対しても効果的に機能していると 言える。 また、クロス横桁の有無で変位を比較すると、端部の 横桁をクロスにすることで、支間中央の水平変位が減少 している。この効果は、直角配置横桁モデルで特に効果 的で、端部で斜めになっている横桁が水平方向からの荷 重に対し、トラス構造として機能したため、端部におい て変位を抑えた結果、全体として変位が減少したと考え られる。斜め配置モデルでも、若干ではあるが変位が減 少していることが確認できる。

5.2 地震荷重

地震の設計水平震度を k_h=0.25 とする。死荷重強度及 び地震荷重を表 - 6 に示す。地震荷重は自重の慣性力が 水平方向に働くと考えるので、載荷する節点に風荷重の ように、分散させて 5 メートル毎に集中荷重として与え る。床版の自重は内桁と外桁に接する節点に、鋼桁の自 重は上フランジと下フランジの中央に与え解析を行った。

解析結果を表 - 5 に示す。地震荷重を載荷させた場合 も風荷重の時と同様な傾向が現れた。やはり、斜め配置 横桁にすることで水平変位を抑えるだけでなく、鉛直変 位に関しても大幅に減少することが出来る。つまり、ね じれ変形を抑制する効果が大きいことが確認できる。ま た、端部をクロス横桁とすることで水平変位を更に抑え ることができる。この効果は、直角配置横桁で特に大き いものとなっている。

図 - 6 に地震荷重を受けたときの、変形の様子を示す。

	横桁直角配置			横桁斜め配置				
	クロス	く無し クロス有り		クロス無し		クロス有り		
	風荷重	地震荷重	風荷重	地震荷重	風荷重	地震荷重	風荷重	地震荷重
内桁上端鉛直変位 y _a	1.489	1.982	0.933	1.229	0.030	0.125	0.052	0.197
〃 水平変位 z _a	3.412	7.283	1.905	4.363	1.437	3.836	1.168	3.053
外桁上端鉛直変位 y_b	2.853	3.577	1.810	2.119	0.518	0.110	0.559	0.519
" 水平变位 z _b	3.409	7.256	1.902	4.336	1.418	3.802	1.150	3.018
内桁下端鉛直変位 y _c	1.484	1.982	0.930	1.232	0.034	0.137	0.056	0.208
" 水平变位 z _c	5.772	10.13	3.508	6.182	2.158	3.790	1.920	3.376
外桁下端鉛直变位 y _d	2.853	3.582	1.810	2.125	0.526	0.121	0.567	0.529
" 水平变位 z _d	5.887	10.23	3.582	6.230	2.070	3.672	1.820	3.121

図-5 支間中央断面の変位

6. あとがき

本研究では、直角配置横桁、斜め配置横桁モデルの端部 のみをクロス横桁にしたモデルを作成し、固有振動解析 や鉛直荷重、風荷重、地震荷重を作用させ静的解析を行 った。

その結果、横桁斜め配置で端部をクロス横桁にしたモ デルは、ねじり剛性を向上させる構造形式であり、鉛直 荷重に対しては、端部をクロス横桁にすることで、ねじ り変形を抑えられ、風荷重に対しても斜めに配置された 横桁がトラス構造として機能し、水平変位を抑えること が出来る構造であることが確認できた。地震荷重に対し ても、変位を抑えることが確認できた。

【参考文献】

- 平沢秀之,林川俊郎,佐藤浩一,小山明久:曲線2
 主桁橋の力学的特性に及ぼす横桁配置の影響,鋼構
 造年次論文集, Vol.6, pp.349-355, 1998.
- 12) 村瀬孝典,小沢一誠,戸田利秋,山田尚之,王慶雲: 少数主桁橋の曲線橋への適用可能性に関する研究, 鋼構造年次論文集, Vol.7, pp.541-548, 1999.

表-6 死荷重と地震荷重

	死荷	ī重	地震荷重		
	鋼部材	PC 床版	鋼部材	PC 床版	
(a)	1258359N	374850N	314590N	937125N	
(b)	1320014N	374850N	330004N	937125N	
(c)	1359203N	374850N	339801N	937125N	
(d)	1412223N	374850N	353056N	937125N	

(a) 横桁直角配置モデル

(b)横桁直角配置端部クロスモデル

(c)横桁斜め配置モデル

(d)横桁斜め配置端部クロスモデル

図-6 地震荷重による変形