鋼製支承の配置を考慮した曲線格子高架橋の大地震時非線形応答

Nonlinear dynamic response of curved viaduct system under level earthquakes in consideration of steel bearing positions

北海道大学大学院工学研究科	F会員	林川 俊郎 (Toshiro Hayashikawa)
北海道大学工学部土木工学科	学生員	中井 仁太郎 (Yoshitaro Nakai)
北海道大学大学院工学研究科	学生員	ダニエル・ルイス (Daniel Ruiz Julian)
北海道大学大学院工学研究科	学生員	阿部 健次(Kenji Abe)

1.まえがき

1995年の兵庫県南部地震によって、交通および物流に かかわる重要な社会基盤構造物の1つである橋梁構造物 は、多くの被害を受けた。特に、高速道路などの高架橋 で数多くの被害が発生した。橋梁の被害は、支承や橋脚 といった地震力が集中する箇所での損傷、崩壊が原因に なったものが多く、これらの被害に伴って、上部構造も 著しい被害が生じた。

この地震のような、レベル 程度の大規模な地震動が 高架橋に作用する場合、部材強度のみで抵抗するには物 理的、経済的に限界がある。そのため、1996年と2002 年に大幅に改訂された「道路橋示方書 耐震設計編」¹⁾ に記述されているように、上部構造・支承・橋脚を一つ の構造システムとして捉えた橋梁全体系の大地震時動的 挙動を調べる必要がある。つまり、先のような大規模地 震動が作用したときに、支承部、橋脚および桁間連結板 などの構成部材の損傷はある程度許すものの、高架橋全 体系としての機能を保持することが重要である。

一般的に橋梁構造物を設計する際,直線高架橋では地 震波を橋軸方向に作用させた平面的な動的応答解析で、 ほぼ正確な地震時の挙動を把握することが可能である. しかし,曲線高架橋は上部構造が曲線であり,3次元的 な広がりを有する構造であることから,平面解析による 正確な挙動の評価は困難である.そのため,動的解析を 行うためには3次元動的非線形解析が不可欠であると考 えられる.また,実際には地震動が橋梁構造物のどの方 向から作用するかわからないため,3次元非線形解析を 行う際には地震波の入力方向を考慮する必要があると考 えられる.

阪神・淡路大震災調査報告書²⁾によると、高架橋の被 害状況は、支承部が鋼製固定支承であるか鋼製可動支承 であるか、または、支承部の固定支承と可動支承の配置 よって橋脚の被害は大きく異なっている。そこで本研究 では、鋼製支承を有する3径間連続曲線格子高架橋を立 体骨組構造にモデル化し、幾何学非線形性と材料非線形 性を考慮した弾塑性有限変位動的応答解析法を用いて地 震波の入力方向を変化させた3次元的動的解析を行い、 入力方向の差異、または支承部の固定支承と可動支承の 配置の違いが曲線格子高架橋の動的応答性状に及ぼす影 響を比較検討する。具体的には上部構造の応答変位軌跡、 橋脚基部の最大曲げモーメント比、橋脚基部の塑性率な どに着目して、その動的非線形応答性状について考察す る。

2.解析モデル

本研究は連続曲線格子高架橋の3次元非線形挙動に ついて検討することを目的としているため,上部構造, 支承部,橋脚の動的相互作用を考慮できる解析モデルと して,図-1のような3径間連続曲線格子高架橋を対象と する.なお,全体座標系(X-Y-Z座標系)は図-1に示す ように設定する.上部構造および橋脚をはり柱要素にモ デル化し、上部構造は62要素に、橋脚は7要素に分割 する。さらに、それぞれの要素を断面方向に24分割、 部材軸方向に5分割するファイバー要素を用いる。また 使用する鋼材の応力-ひずみ関係をバイリニアにモデル 化し、降伏応力235MPa、弾性係数200GPa、弾性域の ひずみ硬化を0.01とする。構造減衰は質量比例型を仮定 し、1次の水平固有振動モードに対する減衰定数h=5% を基準とする。

図-1 3径間連続曲線高架橋

2.1. 上部構造・下部構造

上部構造は曲率半径 100m,橋長 120m (3@40m), 総重量約8.82MNの鋼箱桁を使用する.橋脚は震度法お よび許容応力度設計法に基づき設計を行い,断面幅2.4 m,板厚0.05mの正方形箱形断面の鋼製橋脚を採用し, 橋脚高さはすべて20mとする.橋脚の設計は支承条件を 考慮して橋脚ごとに行うのが望ましいが,本研究では橋 脚断面には全て同一の条件を設定した.また,橋脚の配 置方向は各橋脚とも支承の配置方向を考慮して,支承方 向と同様にし,橋脚の基部は十分に剛である場合を考え 固定とした。

2.2. 支承部(鋼製支承)

本研究で用いる鋼製支承部は水平2方向,鉛直方向, 回転3方向のばね要素にモデル化する.水平2方向は支 承条件に応じた非線形ばねの特性を有しており,鉛直方 向については剛な結合条件を表すために十分大きなばね 定数を設定し,回転方向についてはヒンジ結合を表現す るために小さなばね定数を設定する. 支承の配置方向は、図-2 に示すように上部構造の接線 方向に支承を配置し、支承の配置方向を x軸、その直角 方向を y軸とする局所座標系(x-y座標系)を各橋脚上に設 定する。また、各橋脚上の外側、中間、内側に支承をそ れぞれ設置する。

鋼製支承部の固定支承と可動支承の配置は次の3つの ケースについて比較検討する。ケース1(FMMM)として、 P1橋脚を鋼製固定支承(F)、P2,P3,P4橋脚には鋼製可動 支承(M)を配置する。ケース 2(FMMF)として、P1,P4 橋 脚に鋼製固定支承(F)を、P2,P3 橋脚には鋼製可動支承 (M)を配置する。ケース 3(MFFM)は、ケース 2(FMMF) と逆の配置として、P2,P3 橋脚を鋼製固定支承(F)、P1,P4 橋脚を鋼製可動支承(M)とする。鋼製固定支承は固定の 条件とするため、水平2方向に大きなばね定数を設定す る.鋼製可動支承には摩擦と変位制限構造の影響を考慮 したものを採用する。ただし、支承の配置直角方向に関 しては剛な条件とするために十分大きなばね定数を設定 する。支承の配置方向に関して、K1は支点反力による摩 擦力が最大摩擦力以下の状態での剛性であり、K2は支承 部に作用する水平力が最大摩擦力を超えて支承が滑ると きの状態での剛性、K3は支承が変位制限構造に達した後 に上部構造と一体となって挙動している状態の剛性であ る。ここで、F1は最大摩擦力を超えて支承部が滑り始め る水平力であり、支点反力に静止摩擦係数を乗じた値で ある。また、支承は滑り始めてから 0.1m で変位制限構 造に達するものとし、F2は支承の変位が変位制限構造に 達したときに支承部に発生する水平力である。

3. 解析方法・入力地震波

本研究では、材料非線形性と幾何学的非線形性を考慮 したはり柱要素の有限要素法と、Newmark 法(= 0.25)および修正 Newton-Raphson 法を併用した平面骨 組のための弾塑性有限変位動的応答解析法を3次元的に 拡張した解析方法を用いる。

入力地震波には兵庫県南部地震 JR 鷹取駅を使用する。 この地震波は水平2方向、鉛直1方向からなる3成分地 震波であり、N-S成分を橋軸方向(X軸方向)、E-W成 分を橋軸直角方向(Y軸方向)に作用させる。さらに、 地震波の入力方向は全体座標系のX軸を基準にして0° から180°まで15°ピッチで変化させる。 4. 動的解析結果

4.1. 上部構造の応答変位軌跡

支承部における上部構造の応答変位軌跡として、図-5 にケース1(FMMM)で地震波入力方向角0°の場合を示 す。縦軸は全体座標系のY方向変位(m)、横軸はX方向 変位(m)を表している。

図-5 からをわかるように、各橋脚上の外側、中間、 内側の支承部における上部構造の応答変位軌跡は、ほぼ 同じような軌跡を描いている。これは、上部構造が格子 桁であるため、上部構造が一体となって動いたためと考 えられる。さらに、橋脚 P1、P4の軌跡は接線方向に強 く影響されていることが確認できる。

ケース 1(FMMM)で見られた上記のような特徴は、ケ ース 2(FMMF)とケース 3(MFFM)でも同じであった。 さらに、他の入力方向でも同様な特徴が見られた。

4.2. 橋脚基部の損傷度

(1) 橋脚基部の曲げモーメント - 曲率の関係

代表して地震波入力方向角 0°の場合の、橋脚基部に おける曲げモーメント - 曲率関係の x 方向をケース 1(FMMM)として図-6(a)、ケース2(FMMF)として図-6(b)、 ケース3(MFFM)として図-6(c)に示す。y方向は、ケース 1(FMMM)として図-7(a)、ケース2(FMMF)として図-7(b)、 ケース3(MFFM)として図-7(c)に示す。横軸は曲率(1/m)、 縦軸は曲げモーメント(MNm)を表している。また、橋軸 方向を x 軸、橋軸直角方向を y 軸とする局所座標系を用 いる。

x方向では、すべてのケースで固定支承部(F)において 大きな塑性履歴ループを描いている。可動支承部(M)に おいても固定支承部よりループは小さいが塑性領域に達 している。中でも、ケース 1(FMMM)の P1 の固定支承 部では特に大きな塑性履歴ループである。これはケース 2(FMMF)、ケース 3(MFFM)と比べ、固定支承が一つし かないため、地震による上部構造の全ての慣性力が P1 に集中したためであると考えられる。y方向に関しては、 すべてのケースで内側 2 本の橋脚(P2,P3)で曲げモーメ ントと曲率が大きくなっている。地震波入力方向角 0° についてこのような特徴が見られたが、このことは他の 入力方向角においても同様であった。

図-8 最大曲げモーメント比 - 入力方向角の関係(x方向)

(2) 最大曲げモーメント - 入力方向角の関係

橋脚基部に働く最大曲げモーメント比と地震波の入力 方向角の関係として、x方向は、図-8に上からケース 1(FMMM)、ケース2(FMMF)、ケース3(MFFM)、また y方向は図-9に上からケース1(FMMM)、ケース 2(FMMF)、ケース3(MFFM)を示す。横軸は地震波の入 力方向角であり、縦軸は、橋脚基部の最大曲げモーメン ト(Mを橋脚断面の降伏曲げモーメント(My)で除した値である。ここで、橋脚の降伏曲げモーメントは84.8MNm ある。したがって、この最大曲げモーメントは84.8MNm ある。したがって、この最大曲げモーメントは84.8MNm ある。したがって、この最大曲げモーメントは10/00/00 ことを意味し、降伏は起こらないと考えられる。逆にこ の値が1以上であれば、橋脚基部は塑性領域にあること を意味し、橋脚基部が損傷することも考えられる。図中 においては、M/My=1を太線で示す。

x方向では、固定支承部(F)はほとんどの入力方向角で *M/My*は1以上となり、橋脚基部の損傷が予想される。 可動支承部(M)について、ケース1では固定支承部と同

図-9 最大曲げモーメント比 - 入力方向角の関係(y方向)

様に多くの入力方向角において *M/My*は1以上であるが、 ケース1に比べると、ケース2、ケース3では全体的に *M/My*が小さくなっている。特にケース2のP3では45° から165°において *M/My*は1以下となり、弾性域内に 収まっている。これはP3の支承の設置方向と地震波入 力方向がずれているため、大きな水平力が支承部のx方 向に作用しなかったためと考えられる。y方向について は、3つのケースともに全て支承は固定であり、内側の 橋脚P2、P3は*M/My*は1以上で、塑性領域であるのに 対し、外側の橋脚P1、P4では*M/My*は1以下で弾性領 域という共通の特徴が見られる。

(3) 塑性率 - 入力方向角の関係

橋脚基部の塑性率と地震波の入力方向角 の関係を x 方向は、図-10 に上からケース 1(FMMM)、ケース 2(FMMF)、ケース 3(MFFM)、また y 方向は図-11 に上 からケース 1(FMMM)、ケース 2(FMMF)、ケース 3(MFFM)を示す。(1)の曲げモーメント - 曲率の関係の グラフからもわかるように、塑性履歴ループの大きさは

終局曲率の大きさに依存している。塑性変位の度合いを 比べるために、縦軸は橋脚基部の終局曲率を橋脚断面の 降伏曲率で除した塑性率を用いる。ここで、橋脚の降伏 曲率は 0.001(1/m)である。

x 方向の結果を見ると、全てのケースにおいて固定支 承部(F)で塑性率は1より大きい。中でもケース1のP1 では常に塑性率は4から5であり、どの入力方向角にお いても橋脚基部の損傷が予想される。可動支承部におい ても多くが塑性領域にあるといえる。各ケースで比較し てみると、全体的にケース1は塑性率が大きいのに対し、 ケース3は最高でも塑性率が約3.5程度に抑えられてお り、ケース2で、可動支承(M)は入力方向角によって弾 性域に収まってることがわかる。 y方向ではどのケース も外側の橋脚 P1、P4 は弾性域であるのに対し、内側の 橋脚 P2、P3 は塑性域であることがわかる。またケース 2 で、P2、P3 の x 方向において、入力方向角 60°から 150°にかけて塑性率が特に小さくなっているのに対し、 その入力方向角における y方向では塑性率が大きくなっ ている。このことから、支承部または橋脚に及ぼす影響 は支承の設置方向と地震波の入力方向角に関係している と考えられる。

ケース 2、ケース 3 は、左右対称な構造であるが、動 的解析結果では対称な挙動を示しているとは限らなかっ た。x方向のケース 3 での P1 は、ほとんどの入力方向角 において塑性域に達しているが、P4 は大方、弾性域に収 まっている。図-12 より、橋脚を損傷させる可能性があ ると考えられる大きな水平力は、P1 の支承部に P4 より も先に作用していることがわかる。この水平力によって P1 は、P4 よりも先に塑性化が始まったと考えられる。 P1 が P4 よりも先に塑性が始まった段階で、構造は非対 称となり、P1 の塑性は進んでいくが、P4 は P1 の塑性 による地震エネルギーの吸収で負担が軽くなったため、 弾性域に収まったと考えられる。

図-12 P1、P4 の中間支承部における時刻歴ホ平力 (支承配置は MFFM で、入力方向角は 150°)

5. まとめ

本研究では、鋼製橋脚を有する3径間連続曲線格子高 架橋を対象として、3成分地震波の入力方向の差異と鋼 製支承の配置条件の違いによる曲線高架橋の非線形的動 応答に与える影響を比較検討した。

地震波入力方向角と支承の設置方向が、橋脚の損傷度 合いに関係していることが確認された。また、ケース 1(FMMM)よりも固定支承を一つ増やしたケース 2(FMMF)、ケース3(MFFM)のモデルの方がx方向にお いて最大曲げモーメント比と塑性率が抑えられ、耐震性 が増したと考えられる。y方向では、全てのケースで内 側の橋脚 P2、P3 に地震力が集中していることが確認さ れた。

参考文献

- 1) 日本道路協会:道路橋示方書説 耐震設計編、2002
- 2) 土木学会:阪神·淡路大震災調査報告書-土木構造物の被害,橋梁-,丸善,1992.12.
- 3) 林川俊郎:橋梁工学 朝倉書店 2000.4.
- 4) 林川俊郎・小川伸也・ダニエル-ルイス:支承条件を 考慮した曲線高架橋の大地震時非線形応答性状、平 成15年度土木学会北海道支部論文報告集、第60号、 pp16-19、2004