磁気異方性センサを用いた曲管の非破壊応力評価法について

Non-destructive method for the measurement of stress in bent pipes with magnetic anisotropy sensor

東京ガス(株) 正員 飯村正一 (Shoichi limura)

1. はじめに

維持管理の観点からパイプラインの安全性を評価するた めには応力状態を知ることが必要である。構造物に対する応 力測定では、ひずみゲージによる測定が一般的であるが、 既設パイプラインの応力状態をひずみゲージを用いて測定 するためには切断等の応力解放作業を伴った、いわゆる破 壊検査でないと難しい。一方、供用下のパイプラインの多く はこのような破壊検査を行うことは不可能であり、自ずとその 適用範囲は限られていた。このような背景からパイプラインの 応力を非破壊的に、かつ簡便に測定・評価できる手法として、 磁気異方性を利用した応力測定法(以下磁歪法とよぶ)に着 目し、その利用技術を開発してきた。

曲管には製作時に発生した大きな応力が残留している。 この状態で外力が加わると、測定された応力には沈下などの 外力によって発生した応力の他に残留応力による応力が含 まれていることになる。応力解放などの手段を検討する上で 必要となるのは外力によって発生している応力の値である。 そこで磁歪法で測定された値を、曲管に発生する応力につ いて弾性論などを用いて導かれた理論式に回帰することで、 外力によって発生する応力のみを分離できるか否かについ て検討してきた。まず、面内曲げモーメントが作用するモナ カエルボについての測定値を Karman による理論式に回帰 する方法について検討し、良好な結果を得た^[1]。引き続き高 周波ベンドについての検討を行い^[2]、これら2種類の曲管に ついての検討結果を示した^[3]。その後、面外曲げが作用し たときの曲管の応力を分離する方法について検討した。面 外曲げに対しては Rodabaugh & George^[4](以下「R&G」 と略す)の理論式を用いた。これは、面内曲げに対して適用 した Karman の理論は面内曲げについて表現したものであり、 面外曲げに対しては適用対象外となるからである。実験はマ ンドレルエルボについて行った。面外曲げが作用したときの

外力による応力も、面内曲げの場合と同様の方法で精度良 〈測定できることを示した^[5]。

以上のように、これまでの結果から面内曲げ、面外曲げが 単独で作用した場合については、磁歪法の値を曲管の扁平 応力理論式に回帰することで、外力による応力と製作時の残 留応力とを実用的には十分な精度で分離できることが示され た。本報では面内および面外曲げ荷重が同時に作用した場 合について検討した結果を示す。対象とした曲管は第3報^[5] で用いたものと同じ製法で作られたマンドレルエルボである。

2.磁歪法による応力測定の原理

磁歪法では図1に示すような磁歪センサを測定対象物上 において測定する。被測定物の透磁率とよばれる磁気的な 性質は引張応力方向に僅かに大きくなり、磁気的な異方性 が生じる。このとき、コアEに巻いたコイルに電流を流すと、セ ンサの足E₁から出た磁束のうち大部分は最短距離で直接E₂ へ向かうが、E₁D₁間及びD₂E₂間はE₁D₂間及びD₁E₂間に 比べて透磁率が $\mu_x - \mu_x$ だけ大きいために、一部は矢印の 様にコアDの中を流れる。以上の磁気回路を交流磁界で形 成すると、コアDに巻いたコイルには誘導電流が流れ、(1)式 で表されるような電圧が生じることになり、比例定数Kを知る ことによってこの電圧から応力を求めることが可能となる。

$$V = K_o \cdot (\mu_X - \mu_Y)$$

= $K \cdot (\sigma_X - \sigma_Y)$ (1)
ただし、Ko K、励磁条件 材料磁気特性等で決まる定数

図-1 磁歪センサの動作原理

3. Rodabaugh & George による曲管の扁平応力理論とデ - 夕処理方法

曲管には面内および面外曲げモーメント(M₀)が作用して いるものと仮定する。このときの管軸、管周方向応力 il, ic, ol, oc は、R&Gによると

$$\sigma_{il} = \frac{k_p M_i r}{I(1-v^2)} f_1(\phi)$$

$$\sigma_{ic} = \frac{k_p M_i r}{I(1-v^2)} f_2(\phi) \qquad (2)$$

$$\sigma_{ol} = \frac{k_p M_o r}{I(1-v^2)} f_3(\phi)$$

$$\sigma_{oc} = \frac{k_p M_o r}{I(1-v^2)} f_4(\phi)$$

と表わされる。ここで:管の周方向角度、:ポアソン比、 R:曲管の曲率半径、r:管半径、t:管厚、I:管の断面2次モ ーメント、*Mi, Mo*: 曲管の作用モーメントである。また、 *k*。はた わみ係数と呼ばれ、 $\lambda = tR/r^2\sqrt{1-v^2}$ と置くと、 と内圧 Pの関数である。 $f_1(), f_2(), f_3(), f_4()$ について 具体的に記述すると、次式のようになる。

$$f_{1}(\phi) = (1 + \frac{3m_{1}}{2})\sin\phi + \frac{1}{2}\sum_{n=1}^{\infty} \{m_{n}(1-2n) + m_{n+1}(2n+3)\}\sin(2n+1)\phi \\ \pm \frac{\nu\lambda}{2}\sum_{n=1}^{\infty} m_{n}(2n-8n^{3})\cos 2n\phi$$
(3)
$$f_{2}(\phi) = \nu(1 + \frac{3m_{1}}{2})\sin\phi + \frac{1}{2}\sum_{n=1}^{\infty} m_{n}(2n-8n^{3})\sin\phi + \frac{1}{2}\sum_{n=1}^{\infty} m_{n}(2n-8n^{3})\cos^{2}n\phi + \frac{1}{2}\sum_{n=1}^{\infty} m_{n}(2$$

$$\frac{\nu}{2} \sum_{n=1}^{\infty} \{m_n (1-2n) + m_{n+1} (2n+3)\} \sin(2n+1)\phi$$

$$\pm \frac{\lambda}{2} \sum_{n=1}^{\infty} m_n (2n-8n^3) \cos 2n\phi \qquad (4)$$

Billet

図-2 マンドレルエルボの作り方

$$f_{3}(\phi) = (1 + \frac{3m_{1}}{2})\cos\phi + \frac{1}{2}\sum_{n=1}^{\infty} \{m_{n}(1-2n) + m_{n+1}(2n+3)\}\cos(2n+1)\phi \\ \pm \frac{\nu\lambda}{2}\sum_{n=1}^{\infty} m_{n}(-2n+8n^{3})\sin 2n\phi$$
(5)
$$f_{4}(\phi) = \nu(1 + \frac{3m_{1}}{2})\cos\phi + \frac{\nu}{2}\sum_{n=1}^{\infty} \{m_{n}(1-2n) + m_{n+1}(2n+3)\}\cos(2n+1)\phi \\ \pm \frac{\lambda}{2}\sum_{n=1}^{\infty} m_{n}(-2n+8n^{3})\sin 2n\phi$$
(6)

3111

ここで、m,も k,と同様 と内圧 P の関数となる。nを何次 の項まで取れば良いかについては、 >0.1 であれば 3 次 までで十分とされている。

次にモーメントによって偏平応力が発生している曲管部の 表面を磁歪法で測定し、測定結果を統計処理し、(2)~(6)式 に回帰する。ここで、磁歪法によって測定される応力は直交 2方向の差、すなわち / - 。であるが、回帰を行うと未定 係数であるモーメントが確定されるので、結果として円周方 向および軸方向の応力に分離することができる。

4. 実験方法

JIS-PT370sch40 規格の肉厚 10.3mm、呼び径300A、曲 率半径1.5DR(45.72cm)のマンドレルエルボ(=0.22)に袖 管を溶接したものを供試体とした。図-2にマンドレルエルボ の製作方法の模式図を示す。一方の袖管の端部には荷重 を負荷し易くするためのフランジ板を溶接した。もう一方のフ ランジ板は供試体を鉛直面から30度傾斜させて床に固定す るために袖管とは傾けて溶接により取り付けた。荷重は図-3 に示すようにフランジ板に油圧ジャッキを鉛直上下方向に押 し当てて与えた。これにより、曲管には面内および面外曲げ 荷重を負荷した。

図-3 荷重負荷方法

中央断面付近には検証のための2軸ひずみゲージを15 度ピッチで全周に取り付け、直近において円周方向に5度ピ ッチで磁歪測定を行った。

実験結果と考察

(1) 製作時残留応力の分離

図-4にジャッキの荷重が無負荷のときの磁歪法による測 定結果を示す。同図の角度は図-5に示すように定義した。 図-4の実線はR&Gによる理論式に回帰を行って得られた 曲線を示す。左図が面内曲げの理論式への回帰、右図が面 外曲げの理論式への回帰を示す。製作時に発生した±100 MPa に達する応力が残留しているマンドレルエルボであるが、 理論式に回帰することによって、実用的には無視できる程度 の大きさまで残留応力が低減できることが示されている。これ は、残留応力の位相と外力によって発生する応力の位相が ずれていることによる効果であり、残留応力を分離するため のフィルターとして理論が有効であることを示している。また、 フィルター効果は面内曲げに対するよりも面外曲げに対する 方が高いことがみられる。

(2) 外力による応力の分離結果

図-6にジャッキの押し下げ荷重25kNのときのひずみ ゲージによって測定された応力の直交2方向の差(軸方向 応力 円周方向応力)および磁歪法で測定された応力 (主応力差)をR&Gによる面内曲げの理論式に回帰して 得られた曲線を実線および破線で示す。丸印はひずみゲ ージによって測定された応力を示す。最大応力は円周方 向に発生している。ひずみゲージの値の回帰曲線と磁歪 法の値の回帰曲線はほぼ一致していることから、磁歪法に よる測定値に含まれている曲管製作時の残留応力はほぼ 消去され、面内曲げ外力による応力のみが抽出されている とみなされる。

図-7は図-6と同様にひずみゲージによる応力と磁歪法 による応力をR&Gの理論式に回帰した結果を示す。ただし、 図-6では面内曲げの理論式に回帰した結果であるが、図-7 は面外曲げの理論式に回帰した結果を示す。

図-8は、図-6で得られた回帰曲線と図-7で得られた回帰

図-5 曲管の角度の定義

曲線を、軸方向および円周方向についてそれぞれ重ね合わ せた結果を示す。ひずみゲージによる応力の回帰線と磁歪 法による応力の回帰線は極めて良い一致がみられる。

図-6~8について、ひずみゲージによる測定値と回帰曲 線との比較を行うと、図-8の回帰曲線が最もひずみゲージ の値に近いことが分かる。このことは、面内曲げと面外曲げを 同時に受ける曲管に発生している外力による応力の測定が 可能であることを示している。

6. おわりに

曲管は応力低減を目的として3次元構造の配管ユニットと して用いられることが2次元構造で用いられることよりも多い。 これは3次元の方が2次元よりも応力低減効果が大きいこと による。したがって、3次元構造の配管に沈下などの外力が 作用すると、曲管には面内曲げの成分と面外曲げの成分が 発生することとなる。このような応力状態にある曲管であって も、磁歪法による測定値を面内曲げによる応力状態を表現 する理論式と面外曲げによる応力状態を表現する理論式に 独立に回帰し、それぞれの回帰で得られた曲線を加算する ことによって、実用的には十分な精度での応力測定が可能 であるといえる。

謝 辞

本研究を遂行するにあたりましては JFE エンジニア リング株式会社殿に協力いただいたことを記すとともに、 担当の同社研究員、境 禎明氏に感謝の意を表します。

主応力差面外曲げ回帰

図-4 無負荷時の磁歪測定値のR&G式回帰

図-6 測定値の面内曲げ理論式への回帰結果

図-7 測定値の面外曲げ理論式への回帰結果

図-8 測定値の面内曲げ理論式への回帰曲線と面外曲げ理論 式への回帰曲線の加算結果

参考文献

- 1) 飯村正一,境 禎明:磁歪応力測定法の曲管扁平応力 評価への適用検討,第 57 回土木学会全国大会年次 学術講演会講演概要集,第 部門, pp.477-478, 2002.
- 2) 飯村正一,境 禎明:磁歪応力測定法の曲管扁平応力 評価への適用検討(第2報),第58回土木学会全国大 会年次学術講演会講演概要集,第 部門,pp.687-688,2003.
- 3) S. Iimura, Y. Sakai: Non-destructive method for the

measurement of stress in bent pipes, 3rd .Int. Conf. Emerging Technologies in Non-Destructive Testing, Greece, pp.219-224, 2003.

- 4) Rodabaugh, E.C., and George, H.H., Trans. ASME, Vol. 79, 1957, pp. 939-948.
- 5) 飯村正一,境 禎明:磁歪応力測定法の曲管扁平応力 評価への適用検討(第3報),第59回土木学会全国大 会年次学術講演会講演概要集,第 部門,pp.205-206,2004