FRP シート曲げ補強 RC 梁の耐荷性状へのシート引張剛性の影響 に関する数値解析

Analytical study on influence of axial stiffness of FRP sheet on load-carrying behavior of flexural reinforced RC beams

室蘭工業大学	○学 生 員	張 広鋒 (Guangfeng Zhang)
室蘭工業大学	フェロー	岸 徳光 (Norimitsu Kishi)
三井住友建設 (株)	フェロー	三上 浩 (Hiroshi Mikami)
(独)北海道開発土木研究所	正 員	栗橋祐介 (Yusuke Kurihashi)

1. はじめに

FRPシート曲げ補強 RC 梁の耐荷性状は、シートの接着 長が等しい場合には FRPシートの力学特性や補強量に依 存する.シート厚さが薄いことにより、RC 梁の耐荷性状 に及ぼす FRPシートの影響を検討する場合には、一般に引 張剛性 $E_f \cdot A_f$ (E_f :弾性係数、 A_f :断面積)をパラメータ に取って行われている。著者らは、これまで材料特性の異 なる FRP シートを用いることによりシートの引張剛性を 変化させた場合における、FRP シート曲げ補強 RC 梁の耐 荷性状に関するシート引張剛性の影響を実験的に検討して きた¹⁾.本論文では、これらの実験結果に基づき、RC 梁 の耐荷性状や破壊挙動に及ぼす FRP シートの引張剛性の 影響を数値解析的に検討するため、シートの厚さ t_f や弾 性係数 E_f 、あるいは両方をパラメータとして解析ケース を設定し、3 次元弾塑性数値解析^{2),3)}を行った。

2. 試験体概要および各解析ケース

表-1には実験試験体の一覧を示している. これらの試 験体は、断面タイプを2種類、シート材料を4種類に変化 させた全8体の矩形 RC 梁である. **図**-1には、試験体の 形状寸法および配筋状況を示している. いずれも軸方向鉄 筋に D16 (SD345)を用いた複鉄筋矩形 RC 梁であり、断面 寸法(幅×高さ)はA、Bシリーズでそれぞれ150×250 mm、150×400 mm である. 各 RC 梁の底面には、幅130 mmの FRPシートを梁中央部から両支点の100 mm 手前ま での範囲に接着している. なお、実験時の材料力学特性値 は、コンクリートの圧縮強度 f'_c が31.5 MPa、主鉄筋の降 伏強度 f_y が407 MPa である. **表**-2 には、各 FRP シート の材料特性の公称値を示している.

一方,解析では,**図**-1に示す両断面タイプの試験体を 対象として,補強シートの厚さ t_f ,弾性係数 E_f ,あるいは 両方を変化させることにより,**表**-3,4に示す各解析ケー スを想定した.これらの解析ケースは,すなわち,1)弾性 係数 E_f を一定にして厚さ t_f を変化する場合(6体),2)厚 さ t_f を一定にして弾性係数 E_f を変化する場合(6体),3) 引張剛性 $E_f \cdot A_f$ を一定にして弾性係数 E_f および厚さ t_f を 同時に変化する場合(6体),である.ここで,**表**-3,4に 示す引張剛性の値 2.0~12.0 および 4.0~24.0 MN は,それ ぞれ,**表**-1 に示す各実験試験体のシート引張剛性を基準 にして決定したものである。また,いずれの解析ケースに おいても、シート幅は実験時と同様に130 mm とし、シー トの破断ひずみは AT シートの破断ひずみ値を参考にして 30,000 μ としている. コンクリートの圧縮強度 f'_c や鉄筋 の降伏強度 f_v は便宜的に実験時の値を用いている.

3. 解析概要

図-2には、要素分割図の一例として、梁高 250 mm の 試験体に関する要素分割状況を示している.解析モデル

表-1 試験体の一覧

試験	断面寸法	せん断	補強	補強	引張剛性
体名	幅×高さ	スパン比	枚数	材料	$E_f \cdot A_f$
	(mm)				(MN)
A-C1				炭素 (C1)	10.58
A-C2	150×250	5.0	1	炭素 (C2)	4.99
A-AK	150 × 250	5.0	1	アラミド (AK)	4.39
A-AT				アラミド (AT)	2.57
B-C1				炭素 (C1)	21.16
B-C2	150×400	2.0	2	炭素 (C2)	9.99
B-AK	150 × 400	2.9	2	アラミド (AK)	8.78
B-AT				アラミド (AT)	5.14

表-2 FRP シートの材料特性値

シート	繊維		引張	弾性	破断
材料	目付量	厚さ	強度	係数	ひずみ
	(g/m^2)	(mm)	(GPa)	(GPa)	(%)
炭素 (C1)	340	0.185	2.40	440	0.55
炭素 (C2)	300	0.167	3.40	230	1.48
アラミド (AK)	415	0.286	2.06	118	1.75
アラミド (AT)	350	0.252	2.35	78.5	2.99

表-3 各解析ケースの一覧, 梁高:250 mm

	解析	弾性係数	厚さ	引張剛性	
No.	ケース	E_{f}	t_f	$E_f \cdot A_f$	備考欄
	名称	(GPa)	(mm)	(MN)	
1	A-T1		0.0769	2.0	
2	A-T2		0.1538	4.0	猫性
3	A-T3	200	0.2308	6.0	岸住 示
4	A-T4	200	0.3077	8.0	孝とと 反比とし ス提会
5	A-T5		0.3846	10.0	う 勿 口
6	A-T6		0.4615	12.0	
7	A-E1	76.923		2.0	
8	A-E2	153.85		4.0	直さ一定 硝性
9	A-E3	230.77	0.2	6.0	尽ひ 足, 岸日 係数を変化させ
10	A-E4	307.69	0.2	8.0	ス場合
11	A-E5	384.62		10.0	う 勿 口
12	A-E6	461.54		12.0	
13	A-EA1	50	0.9231		
14	A-EA2	100	0.4615		引張剛性一定,
15	A-EA3	200	0.2308	6.0	弾性係数および 厚さを同時に変
16	A-EA4	300	0.1538		
17	A-EA5	400	0.1154		化させる場合
18	A-EA6	500	0.0923		

図-2 要素分割図の一例(梁高:250 mm)

は, RC 梁の対称性を考慮してスパンおよび断面方向に2 等分した 1/4 モデルである. コンクリート,上下端鉄筋 および FRP シートは,8節点あるいは6節点3次元固体要 素を用いてモデル化している.境界条件は,解析対象の連 続性を考慮して,対称切断面においてはその面に対する 法線方向変位成分を拘束し,支点部においては節点の鉛 直方向変位成分を拘束している.なお,解析では強制変位 により載荷し,収束計算には一般に広く用いられている Newton-Raphson 法を採用している.

本研究では、ひび割れの開口,主鉄筋のすべりおよび シートの剥離などの不連続現象を離散ひび割れを用いて モデル化している.離散ひび割れの配置に関しては、文献 3)を参考にして 図-2 に示すように配置している.すなわ ち、載荷点近傍の等せん断力区間およびシート端部におい て傾斜角 45°で梁高さ中央までの斜め離散ひび割れを配置 し、シートのピーリング破壊あるいはシート端部からのか ぶりコンクリートの剥離破壊をモデル化することとした. これらの離散ひび割れ配置や適用した応力-相対変位関係 の詳細は文献 2,3) に譲ることとする.

また、コンクリートの材料構成則に関しては、圧縮側に は圧縮ひずみ 3,500 μ まで土木学会コンクリート標準示方 書に基づいて定式化し、3,500 μ 以後は初期弾性係数の 0.05 倍で 0.2 f'_c まで線形軟化するモデルとした.降伏の判定に

表-4	各解析ケ	ースの一覧,	梁高:400 mm
-----	------	--------	-----------

No	解析 ケース	弾性係数 E4	厚さ te	引張剛性 Ec:Ac	備者欄
1101	名称	(GPa)	(mm)	(MN)	VIII J IVA
1	B-T1		0.1538	4.0	
2	B-T2		0.3077	8.0	硝酰氨粉一宁
3	B-T3	200	0.4615	120	理止示奴 足, 国さを亦化させ
4	B-T4	200	0.6154	16.0	ス提会
5	B-T5		0.7692	20.0	う 勿口
6	B-T6		0.9231	24.0	
7	B-E1	76.923		4.0	
8	B-E2	153.85		8.0	国マニウ 硝桃
9	B-E3	230.77	0.4	12.0	序で 足, 岸圧
10	B-E4	307.69	0.4	16.0	水奴を反応させ
11	B-E5	384.62		20.0	う 勿口
12	B-E6	461.54		24.0	
13	B-EA1	50	1.8462 0.9231 0.4615 0.3077 0.2308 0.1846		
14	B-EA2	100			引張剛性一定,
15	B-EA3	200		12.0	弾性係数および
16	B-EA4	300		12.0	厚さを同時に変
17	B-EA5	400			化させる場合
18	B-EA6	500			

図-3 各試験体における実験結果の荷重-変位関係

は von Mises の降伏条件を用いている。一方,引張側には 線形軟化モデルを適用している。上下端鉄筋とスターラッ プには,塑性硬化係数 H'を考慮した弾塑性体モデルを適 用した。降伏は von Mises の降伏条件に従うものとしてい る。FRP シートは,引張強度に達した時点で破断したと見 なされるモデルを適用している²⁾.

4. 解析結果および考察

4.1 荷重-変位関係

図-3には参考のために,表-1に示す各試験体におけ る実験結果の荷重-スパン中央点変位(以後,単に変位) 関係を示している.図-4,5には表-3,4に示す各解析 ケースにおける解析結果の荷重-変位関係を比較して示し ている.ここで,図-4,5に示す各解析結果を図-3の実 験結果と比較すると,シートの引張剛性が同程度である場 合,解析結果は実験結果と大略一致していることが分かる.

図-4(a) には弾性係数 E_f を 200 GPa としてシート厚さ

図-4 各解析結果の荷重-変位関係,梁高:250 mm

 t_f を変化する場合の各解析結果を示している.図より,曲 げひび割れ発生時まで,各結果は一様な分布性状を示して いる.その後,シート引張剛性が高いほど,荷重-変位曲 線の剛性勾配や降伏時荷重が大きくなっていることが分か る.但し,主鉄筋降伏前と比べ,シートの補強効果が十分 に発揮される主鉄筋降伏後には各結果間の差異が明瞭に なっている.また,最大荷重および最大荷重時変位を見る と、シート引張剛性が高いほど,より小さい変位時で RC 梁

が最大荷重値に達しかつ終局に至っていることが分かる.

図ー4(b)より、シート厚さ t_f を一定にして弾性係数 E_f を変化する場合には、(a)図と同様な分布性状を示していることが分かる.すなわち、シート引張剛性が高いほど、RC梁の剛性は大きくなるが、変形性能は逆に小さくなっている.一方、図ー4(c)より、シート引張剛性を一定にして弾性係数 E_f と厚さ t_f を同時に変化する場合には、終局時付近の各解析結果間には僅かの差異が生じているもの

図-6 最大荷重時変位とシート引張剛性の関係

の,載荷初期からシート剥離によって終局時に至るまで各 解析ケースはほぼ同様な耐荷性状を示すことが分かる.

図-5には梁高 400 mm の試験体における各解析結果の 比較図を示している. (a) 図を見ると、シート厚さ t_f を一 定として、弾性係数 E_f を増加することによって引張剛性 を増加させる場合には、RC 梁の剛性が大きくなる反面、 梁の変形性能が低下することが分かる.また、**図**-5(b)よ り、弾性係数 E_f を一定にして補強厚さ t_f を変化させる場 合においても同様な傾向を示していることが分かる.一 方、**図**-5(c)より、**図**-4(c)と同様、引張剛性が一定であ る場合には、**図**-4(c)の結果と同様に弾性係数 E_f やシー ト厚さ t_f によらず各解析ケースの耐荷性状はほぼ同様で あることが分かる.

図-6には、各解析ケースに関する最大荷重時変位と引 張剛性の関係を示している。図より、梁断面形状寸法にか かわらず、FRPシートの引張剛性が大きいほど、RC梁の 最大荷重時変位が小さくなる傾向にあることが分かる。

上述のことより,曲げ補強シートの引張剛性を増加させ る場合には,1) RC 梁の曲げ剛性は大きくなる,2)しかし ながら,より小さい変位時点でシート剥離によって終局に 至り, RC 梁の変形性能が小さくなる,3) そのため, RC 梁 の終局耐力は必ずしもシートの引張剛性に対応して向上し ない,4) 引張剛性が同程度である場合には,シートの厚さ や弾性係数の大きさによらず RC 梁の耐荷性状は同様にな る,ことが解析的に明らかになった.

4.2 破壊メカニズムの検討

各解析ケースの終局原因に関しては, B-T1, B-E1 解析 ケースを除き,他の全ての解析ケースは斜めひび割れによ るシートのピーリング破壊によって終局に至った. B-E1, B-T1 両解析ケースは,シート端部におけるかぶりコンク リートの剥離破壊によって終局に至った. 図-7には,一 例として,終局直前における解析ケース B-T1 および解析 ケース B-T6 両試験体の破壊状況を示している.図より, 解析ケース B-T1 はシートのピーリング破壊,解析ケース B-T6 は下縁かぶりコンクリートの剥離破壊,によって終 局に至ったことがうかがえる.

さらに,各解析ケースの破壊挙動を検討すると,シート の引張剛性が大きい場合には,1)引張剛性の小さい場合よ りもピーリング作用を励起する斜めひび割れの開口および

シートの剥離が早期に発生する傾向にある,2)シートの ピーリング破壊の他,シート端部からのかぶりコンクリー トの剥離破壊も発生する傾向にある,ことが明らかになっ た.これらの原因として,曲げ補強シートの引張剛性が大 きいほど,1) RC 梁の曲げ剛性が増加するのに対して,せ ん断耐力は増加しないため,RC 梁の耐荷機構が曲げモー ドからせん断モードに移行する傾向を示し,シート剥離を 励起する要因となるかぶり部の斜めひび割れの開口が早期 に発生すること,2)シート剥離開始後の同一変位時には, シートの引張剛性が大きいことにより,シート断面に作用 する引張力も大きくなるため,付着界面に作用するせん断 応力も大きくなり,シートの全面剥離が早期に発生するこ と,3)シート端部における斜めひび割れおよびかぶりコ ンクリートの剥離破壊が発生する傾向にあること,等が考 えられる.

5. **まとめ**

- (1) FRPシート曲げ補強 RC 梁は、シートの引張剛性が大きいほど補強後の RC 梁の剛性が高くなる一方、シートのピーリング破壊を励起する斜めひび割れの開口が早期に発生し、より小さい変位でシートの全面剥離によって終局に至る.
- (2) また、シートの引張剛性が大きいほど、シートのピー リング破壊の他、シート端部からのかぶりコンクリー トの剥離破壊も発生する傾向にある、ことが数値解析 的に明らかになった。

参考文献

- 張 広鋒,岸 徳光,三上 浩,栗橋祐介:RC梁の耐 荷性状に及ぼす曲げ補強FRPシートの引張剛性の影 響に関する実験的研究,コンクリート構造物の補修, 補強,アップグレード論文報告集, Vol. 4, pp.383-388, 2004.
- 2)岸 徳光,三上 浩,張 広鋒:FRPシート曲げ補強 RC梁に関するシートの剥離挙動解析,土木学会論文 集,No. 725/V-58, pp.255-272, 2003.
- 3) 張 広鋒,岸 徳光,三上 浩:ひび割れ分布モデル のFRPシート曲げ補強 RC 梁に関する数値解析への適 用性,構造工学論文集, Vol.51A, (投稿中).