網走湖の塩淡境界層水深と水文気象データの多変量解析

Multivariate analysis of boundary layer depth between saltwater and freshwater in Lake Abashiri with hydrological and meteorological data

北見工業大学大学院 ○学生員 杉山一郎 (Ichiro Sugiyama)北見工業大学工学部 フェロー 佐渡公明 (Kimiteru Sado)

1. まえがき

網走湖は、オホーツク海へ流れる1級河川網走川の最 下流部に位置し、面積32.3km²、最大水深16.1mの汽水 湖である。近年、網走湖のアオコ、青潮の水質事故は、 塩淡境界層水深(hsf)と密接な関係があるといわれてい る。hsf は昭和の始めに湖底にあったが、以後着実に減 少し、最近は5mを下回っており(表-1,図-2,4)、風速 10m/s 以上の南風が吹けば青潮の発生が予測される非常 に危険な状況にある。また、平成14年7月、網走湖を 含む網走川が、緊急的に水環境を改善する必要のある河 川として国土交通省より選定された。網走湖水質保全対 策検討委員会は、このhsf が7m付近では青潮の発生が 報告されていないこと、また、網走湖のヤマトシジミの 生育には適度な塩分が必要であることも考慮してhsf を 6~7mに制御することが望ましいとしている。

本論文では, hsf とこれに影響を及ぼす水文気象デー タの 10 変数を時系列解析によって,それらの傾向を明 らかにする。また,10 変数の内,相関があると思われ るものを除いた 1~7 変数に対する総当り組合せによる 重回帰分析を行ない, hsf に及ぼす影響の大きい因子の 組合せを明らかにする。最後に,主成分分析によりこれ らの変数を特性値ごとに分類する。

2. 塩淡境界層水深及び水文気象データ

北海道開発局網走開発建設部により観測された網走湖 の年平均塩淡境界層水深(hsf),本郷地点(湖上流側)の 年平均水位(Hi),流量(Qi)及び年平均 BOD,川尻地点 (湖中央部)年平均水位(Hk),大曲地点(湖下流側)の年 平均水位(Ho)及び流量(Qo), さらに網走地方気象台で 観測された年降水量(R),網走港年平均潮位(H),網走 地方の夏期(4月~11月)平均風速(Wv)及び冬期(12月~ 翌年3月)平均気温(Ta)のデータを使用する。図-1に網 走湖付近の模式図を示す。また、図-2 に R, hsf, 15 年 移動平均降水量の変動を、図-3 に Hi, Hk, Ho, H, Qi 及び Qo の年平均値の変動をそれぞれ示す。ここで、本 論文では表現を簡単にするために, 有機物負荷量を表す BOD も水文気象データに含めている。BOD は、淡水層 の水質を悪くする効果があるが、hsf との直接の因果関 係は現在のところ良く分かっていない。しかし、本研究 でこれを採り入れることにより, データ上の新しい知見 が得られるかもしれないため、水文気象データとして扱 うことにする。風速 Wvは、風が引き起こす波により水 中の内部セイシュが発生し、塩水層が攪拌され、それが 流出することにより hsf に対して良い効果をもたらすと

考える。冬期の気温 Ta は、湖面結氷時の氷厚に影響し、 湖水位が抑制され潮位との差が満潮時に増加し、塩水遡 上の流量が多くなると考える。表-1 は、各年における

年	1988	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	平均值
データ数	9	38	27	31	41	48	34	42	119	20	26	40
平均值(m)	5.13	6.02	5.91	6.25	7.33	7.40	6.83	5.63	5.39	5.19	4.75	5.98
標準偏差(m)	0.93	0.19	0.17	0.17	0.24	0.56	0.38	0.38	0.59	0.54	0.23	0.40
変動係数	0.18	0.03	0.03	0.03	0.03	0.08	0.06	0.07	0.11	0.10	0.05	0.07

表-1 各年における網走湖塩淡境界層水深の平均値,標準偏差及び変動係数

(破線は、冬期間(12月~翌年3月)を表す。)

hsf の変動係数を示しており,2001 年に大きく変動して いることがわかる。図-4 では、冬期に hsf が減少傾向 (上向きに負)となる場合の多いことがわかる。これは、 冬期には夏期よりも淡水流入量が減少すること、かつ、 湖面が結氷することによる影響(前述参照)と思われる。 1998 年,2001 年及び 2002 年の秋期に hsf が大きく増加 しているのは、秋雨前線及び台風等の豪雨による淡水流 入量の増加が大きく影響しているためと思われる。

3. 時系列解析

hsf 及びこれに影響を及ぼす各水文気象データの傾向

成分を時系列解析により調べてみる。時系列理論¹⁾では, 原系列(Y(t))に対して傾向成分(T(t)),周期成分(P(t)), 確率変動成分($\varepsilon(t)$)の三つに分解され,これらの関係を 式(1),(2)に示す。

$$Y(t) = T(t) + P(t) + \varepsilon(t) \qquad \cdots (1)$$

$$\varepsilon(t) = \rho_1 \varepsilon(t-1) + \eta(t) \qquad \cdots (2)$$

ここで、t:年、 ρ_1 :遅れ 1 年の自己相関係数、 η (t): 純偶発成分を表す。

まず, 欠測年の無い連続したデータの中で最も多い個数の年降水量(*R*) (1890~2003年: 114個)の時系列モデルを考える。ここでは, *Y*(t)に対する*T*(t)が良く表されるよう5次回帰曲線モデルを考え,最小2乗法によりこれを求める。次に, *Y*(t) – *T*(t)の系列から卓越周期を探すため,この系列のコレログラムとパワースペクトル(図-5)を求める。図-5から,*R*の卓越周期を上位第3位まで見ると2.7年,2.1年及び8.3年であることが分かる。パワーである全ての山(11個)から,*P*(t)及び1次のMarcov過程で表した ε (t)が求められ,*R*の時系列モデル*R*(t)が得られる(式(3))。なお,*P*(t)は11個のsin関数及び定数項で表されるが,式(3)では,簡単に3個の卓越周期の項で表している。

$$R(t) = 606.6 + 20.86t - 0.6030t^{2} + 8.564 \times 10^{-3}t^{3}$$

-64.33×10⁻⁶t⁴ - 0.2000×10⁻⁶t⁵ - 0.6213
+29.00sin $\left(\frac{2\pi}{100/12}t - 0.2787\right)$ + 62.07sin $\left(\frac{2\pi}{100/37}t + 2.427\right)$
+41.31sin $\left(\frac{2\pi}{100/47}t + 1.938\right)$ - 0.1173 $\varepsilon(t-1) + \eta(t)$...(3)

同様にして、hsf 及び各水文気象データの時系列モデ ルが得られる。表-2 は、上記によって求められた各時 系列モデルから、原系列 Y(t)の分散に対するそれぞれ の成分が持つ分散の割合を示している。また、 $\eta(t)$ を極 力少なくするよう、Marcov 過程を 10 次まで採って求め ている。"Trend"の欄は、T(t)を 1 次回帰直線とした ときの傾きの符号を示す。また、"効果"の欄は、その データが独立に Trend の符号で変化した場合、hsf を増 加させ、網走湖の淡水層の水質を改善する効果を"〇"、 逆に hsf を減少させ、淡水層の水質を悪くする効果を "×"で示している。よって、H と BOD のみが増加す れば×、他は全て増加すれば〇となる。

ここで、原系列の移動平均を取ることにより、R 及び Ho はそれぞれ5年、10年の移動平均でTrendの符号は 逆転した。このように移動平均の年数の取り方により結 果が左右される。また、データ年数以上の周期が各デー タに存在するとすれば、求められた傾向成分は、その年 数以上の周期変動の一部分を構成することになる。しか

平成16年度 土木学会北海道支部 論文報告集 第61号

表-2 hsf 及び各水文気象データの時系列モデルに対する各成分の分散の割合("周期"欄:上位第3位まで示す)

	hsf	R	Н	Hk	Hi	Qi	Но	Qo	Wv	BOD	Та
	(m)	(mm)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)	(ppm)	(°C)
データ数	30	114	47	33	33	33	33	33	53	35	114
分散	3.803	20,020	0.0026	0.0115	0.0306	20.59	0.0029	44.53	0.1127	1.272	1.048
T(t)	96.1%	12.8%	59.6%	75.3%	77.8%	54.7%	59.3%	47.1%	75.2%	75.3%	18.8%
P(t)	2.3	27.6	11.7	7.4	3.1	11.1	7.0	13.6	12.3	12.2	34.2
<i>s</i> (<i>t</i> -1)	0.6	9.7	8.9	8.0	19.1	18.2	25.1	24.4	8.4	5.6	4.2
$\eta(t)$	1.0	49.9	19.8	9.3	0.0	16.0	8.6	14.9	4.1	6.9	42.8
周期	1.8	2.7,	10, 2.2,	7.5,	10.3	6, 2.7,	27.6	3.8, 6,	5.6,12.5,	15,	7.7,16.7,
(年)	4,0	2.1, 8.3	2.7	3.8, 2.7	10, 5	3.8	2.7,0	10	4.2	3.3, 2.3	11.1
Trend	_	+	+	—	_	+	_	+	_	_	+
効果		0	×	×	×	0	×	0	×	0	0

表-3 7 変数の水文気象データの組合せの hsf に対する寄与率(変数1個の場合は単相関係数)

変数	組合せ		最	:大	最小			
の数	通り数	重相関係数	寄与率	対象変数	重相関係数	寄与率	対象変数	
1	$_{7}C_{1}=7$	-0.3715	13.80%	Та	0.0494	0.24%	Qi	
2	₇ C ₂ =21	0.5503	30.28%	Но-Н, До	0.1332	1.77%	Qi, R	
3	₇ C ₃ =35	0.6250	39.06%	Ho-H, Qo, Wv	0.2609	6.81%	Qi, R, BOD	
4	₇ C ₄ =35	0.6765	45.77%	Ho-H, Qo, Wv, R	0.3732	13.93%	Qi, R, BOD, Ho-H	
5	₇ C ₅ =21	0.6896	47.56%	Ho-H, Qo, Wv, R, Qi	0.4446	19.77%	Qi, R, BOD, Ho-H, Ta	
6	$_{7}C_{6} = 7$	0.6967	48.55%	Ho-H, Qo, Wv, R, Qi, Ta	0.6453	41.65%	Qi, R, BOD, Ho-H, Ta, Qo	
7	$_{7}C_{7}=1$	0.6977	48.68%	(全ての変数)				

し、5 次回帰式で表される hsf の T(t) の割合は 96.1%と 非常に大きく、その卓越周期は4年であることが示され た。この1 次回帰式の Trend は負を示しており、さらに 減少していくことが予測される。表-2 から、全体の hsf に対する "効果"の数は半々であり、各水文気象データ が hsf に対してどの程度影響を及ぼしているのかをこの 段階で判断することは困難である。よって、次章と合わ せてこのことについて多変量解析していく。

4. 重回帰分析

hsf を目的変数,水文気象データを説明変数とした重 回帰分析^{2),3)}によって,hsf に対する水文気象データの寄 与率を調べてみる。ここで,扱うデータの組合せに欠測 年がある場合,当該年度のその他項目のデータを使用す ることが出来ないため,1971年,1974~2003年の計31 個のデータを用いる。さらに,変数の組合せで相関の高 いと思われるものを考慮し,Hk及びHiを省き,大曲水 位と潮位の水位差(Ho-H)とした7変数により解析を行 う。

7 個の説明変数から 1~7 個ずつ選択した場合のあら ゆる組合せを想定すると 127 通りであり,重回帰分析に より求められた重相関係数の 2 乗で表される寄与率が, 最大及び最小となる組合せを表-3 に示す。この結果か ら, hsf に与える影響が大きい水文気象データは,大曲 水位と潮位の水位差(Ho-H),大曲流量 Qo 及び風速 Wv であり,逆に影響が小さい変数は,本郷流量 Qi,年降 水量 R 及び BOD であることがわかる。

しかし、Qi 及び R の影響が小さいのは何故であろう

か。双方,淡水流入量を示す水文量であるが,前章より hsf は増加傾向にあることから,Ho-H等よりも単純に影 響の小さいことが考えられる。また,Rにおいては,無 降雨連続日数が長く山間部が乾燥している場合,河川水 となって湖へ流入する量に影響を及ぼしていることが推 測される。さらに,年間データを扱っているため,降水 による日々の小さな hsf への変化が顕著に現れてこない ことも考えられる。

時系列解析と重回帰分析の結果から, hsf の減少に大 きく影響を及ぼしている水文気象変数は, Ho-H, Qo 及 び Wv であり, hsf が減少傾向であるということは, Ho-H 及び Wv の "効果" が大きいことを意味していると言 えよう。

5. 主成分分析

主成分分析^{2),3),4)} により,前章と同様に潮位と大曲水 位の水位差を変数とした *hsf* に及ぼす水文気象データ(7 変数)の1971年及び1974~2003年の計31個のデータを 用いて解析を行う。各変数を平均0,分散1に基準化し て得られる固有値($\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_7(\ge 0)$)及び固有ベクト $\mu(l_1, l_2, \cdots, l_7)$ から,新しい変数 $z_k(k=1, \cdots, 7)$ は次式と なり,第k主成分が求まる。

 $z_k = l_{1k}x_1 + l_{2k}x_2 + \cdots + l_{7k}x_7$ ····(4) このように、7 個の水文気象変数 x_i ($i=1,\cdots,7$)から求め られた主成分に対する x_i の寄与率を求めることによっ て、これらの変数自身の分類をすることが出来る。これ には、次式で表される主成分と個々の変数との相関係数 (因子負荷量) rを用いる。

$$r(z_k, x_j) = \sqrt{\lambda_k} \times l_{jk} \qquad (j = 1, \cdots, 7) \qquad \cdots (5)$$

この 2 乗が z_k の x_i に対する寄与率となる。求められる 主成分の結果の解釈を容易にするため、いずれの変数も 増大すれば hsf が増大するよう、BOD を "-BOD" に データ変換して行なう。

上記により求められた数値計算結果の一部を表-4,また,主成分 $z_1 \ge z_2$ の因子負荷量をそれぞれ横軸と縦軸 とするグラフにしたものを図-6 に示す。各変数の点と 原点との距離は当該主成分の累積寄与率の平方根となっ ており、半径1の円に近い変数ほど2つの主成分でよく 説明される変数となる。これらより、 z_1 及び z_2 の固有 値及び寄与率 r^2 は、(λ_1 =3.2264, r_1^2 =0.4609)、(λ_2 = 1.4876, r_2^2 =0.2125, $r_1^2+r_2^2$ =0.6734)である。 z_1 におい て、因子負荷量 rの z_1 が 0.8 以上の大きいグループ No.1(R, Ho-H, Qi, Qo)を見ると、いずれも hsf を増加 させるのに効果的な水文量を表す変数で正となっている。 同様に z_2 が 0.7 以上の大きいグループ No.2(Ta, BOD) を見ると、双方、水文量以外の変数である。

また,表-4 の寄与率を見てみると, z_1 については,グ ループ No.1 の r^2 は 0.66 以上と非常に良く説明されてい るが,その他に至っては、0.18 以下と非常に小さい。 z_2 では、*Ta* 及び *BOD* の r^2 が大きく増加し、その他はほと んど説明されていない。さらに、風速 *Wv* の r^2 は、 z_2 ま でが 0.20、 z_3 で 0.87 を超えた。これは、*Wv* が他と異な る特質を持っていることを示している。

したがって、上記をまとめると第1主成分は、水文量 の増加(降水量の増加,大曲水位一潮位の水位差の増加, 大曲及び本郷の流量増加)により、hsf を"直接的"に 増加させる特性値と言える。第2主成分は、冬期平均気 温の増加及び BOD の減少(データ変換しているため)に より hsf を"間接的"に増加させる特性値と言える。そ して第3主成分は、強い風速が引き起す青潮等の湖水の 鉛直混合が起こり、かつ、Ho-H の差が正の時、湖内の 塩水が河川に流出し hsf が増加すると考えると、hsf を "副次的"に増加させる特性値と言える。

6. 結論

本研究で得られた結果をまとめると以下のようになる。 (1)時系列解析により,塩淡境界層水深及びそれに影 響を及ぼす 10 変数の水文気象データの時系列モデルが 求められ,各変数の傾向成分及び周期を明らかにした。 特に,塩淡境界層水深の Trend は減少傾向であり,5次 回帰曲線で表される傾向成分は原系列の分散の 96%と 大きく占めることを示した。

(2)7変数の水文気象データのあらゆる組合せ(127通 り)を重回帰分析し、塩淡境界層水深に対する寄与率で 影響度合を求めた結果、最も寄与するものが大曲水位と 潮位の水位差、大曲流量及び風速であり、逆に影響が小 さい変数は、本郷流量及び降水量であることを示した。

(3)時系列解析及び重回帰分析の結果から、塩淡境界層水深の減少に大きく寄与する水文気象変数は、大曲水位と潮位の水位差及び風速の効果が大きいことを示した。
(4)主成分分析により、z1、z2、に対する因子負荷量の

表-4 主成分 z₁, z₂, z₃の因子負荷量と寄与率

変数	因一	子負荷量	r	累積寄与率 r ²			
	z_1	z_2	Z_3	z_1	$z_1 + z_2$	z _{1,2} +z ₃	
R	0.81	0.14	0.14	0.66	0.68	0.70	
Но-Н	0.86	-0.29	0.03	0.74	0.82	0.82	
Qi	0.93	0.11	0.07	0.86	0.88	0.88	
Qo	0.87	0.31	0.07	0.76	0.86	0.86	
Wv	-0.42	0.16	0.81	0.18	0.20	0.87	
-BOD	-0.18	0.72	-0.54	0.03	0.55	0.85	
Та	-0.05	0.85	0.26	0.00	0.73	0.80	

図-6 主成分 z₁, z₂の因子負荷量

グラフ及び z₁~z₃の寄与率から,塩淡境界層水深に影響 を及ぼす7個の水文気象変数を3つのグループー直接的 要素,間接的要素,副次的要素一に分類した。

ところで、塩淡境界層水深を 6~7m に制御するため には、一体どうすれば良いのだろうか。本論文の結果か ら、大曲地点での河川流量(水位)に関する対策が大きく 効果を上げることが期待される。例えば、大曲地点での 水草の栽培を行なうことで、水草の茎等による河川下層 水の流速減少かつ水位上昇により、塩水遡上量も抑制さ れ、環境上あらゆる面で効果を上げるものと思われる。

自然及び生態系を保護するため,正に緊急な対応を必 要としている。

参考文献

- 岸 力:1975年度(第11回)水工学に関する夏期研修 会講義集Aコース、土木学会水理委員会、水工学シ リーズ75-A-6、A-6-pp.1-27、1975.
- 奥野忠一, 久米 均, 芳賀敏郎, 吉澤 正:多変量 解析法, 日科技連, pp.25-257, 1979.
- 3)田中 豊, 垂水共之, 脇本和昌:パソコン統計解析 ハンドブックⅡ多変量解析編, 共立出版株式会社, pp.160-175, 1984.
- 芳賀敏郎,橋本茂司:回帰分析と主成分分析,日科 技連,統計解析プログラム講座2, pp.161-180, 1980.