既設水力発電所の余水路減勢効果に関する研究

H発電所水理模型実験による検討

Study on Energy Dissipator for Spillway of Existing Hydropower Station Hydraulic Model Test of H-PowerStation

北海道電力(株)	正	員	笠井秀男(Hideo Kasai)
北海道電力(株)	ΤĒ	員	神藤謙一(Kenichi Kando)
北海道電力(株)			渡邊光春(Mitsuharu Watanabe)
北電総合設計(株)			上田知広(Tomohiro Ueda)

1.はじめに

水力発電所の余水路では、高い位置エネルギーを有する箇 所から十分減勢させて下流に放流する必要がある。

今回検討対象とした H 発電所は現状ではスキージャン プ式の余水路形状となっているが、下流河川で最近特にカ ヌーやラフティングが盛んとなり、現状の余水路では公衆 災害の発生が懸念されるため、余水路吐口から安定放流で きるように減勢工を「立坑型と衝撃型の併用型」に改造す る予定であり、既に「併用型」で余水路を改造している当 社上岩松発電所の事例¹⁾を参考として、コスト低減と安定 放流を目指した水理模型実験を実施することとした。

2.水理模型実験の概要

2.1 実験模型

当実験の流況については重力と慣性力が支配的である と考え、フルードの相似則を採用した。また、過去の実験 事例や実験場スペースを考慮し、模型縮尺を1/24とした。

写真 - 1、図 - 1 に実験模型の概要を示す。実験模型は 余水管、減勢工、下流水槽から構成し、流量および余水管 内流速の調整は余水管上流側のゲートで行うこととした。

減勢工は「併用型」で設計し、余水管からの水流を衝突 板に当てて勢いを弱め、ディフレクターに沿わせて立坑 (減勢室)に落とした後、下流水槽に放流する構造とした。 2.2 実験条件

流速については、以下の制約条件を設定した。測定位置 図を図 - 2 に示す。 開口部末端から常流で流れるように、開口部末端(aラ イン)で限界流速以下となること。

電源開発(株)の事例²⁾を参考とし、余水放流後の河川 流速については、下流水位 NWL124.985m を再現した状態 で、擁壁末端(bライン)で基準値(2m/s 以下)に収 まること。

また、減勢工模型の幅については、当初上岩松発電所余水 路との流量比から B₁=9m に設計していたが、電中研の指標 B₁=2.5d(d:余水管径)³⁾より B₁=6m を採用した。他の模型寸 法については、減勢工の上流端位置・長さおよび天端高を固 定とし、開口部幅、放流部段差、減勢室縦断寸法をパラメー タとして最適形状を求めることとした。

なお、下流水位については下流水槽に貯水することで再現 可能としたが、危険側の条件で実験を行うことを前提とし、 基本的に再現しないことした。

2.3 実験ケース

実験は表 - 1のとおり、減勢工形状を検討する予備実験 (ステップ1~5) および圧力等の詳細検討を行う本実 験を実施した。

予備実験では余水管および減勢工内の減勢状況を観察 しながら、流速等の制約条件を満足し、かつ内空が最小と なる形状を減勢工の下流側から各ステップごとに決めて いくこととした。

本実験では予備実験で選択した形状について、改造工事 の設計に反映するための基礎資料を得るために圧力を詳 細に測定した。

図 - 2 測定位置図

表 - 1	実験ケースおよび実験約	结果
-------	-------------	----

ステップ		757	k 7	対象流量	減勢工寸法 (Bは開口部幅)									減勢室縮小∨				基準				評価		
		9-X	(m ³ /s)	BO(m)	W(m)	W1(m)	W2(m)	W3(m)	(°)	L(m)	L0(m)	L1(m)	L2(m)	T(m)	下流側	上流側	底部	計	a ライン流速	bライン流速	流況	圧力		
開口部幅 放流部段		1	1-1		9					90										OK	OK	OK		0K
	開口部幅検討		1-2	37.1	69	4	0	1	0		14	0	14	7	1.5	-			OK	OK	OK OK	-	0K	
			1-3		6															OK			NG	NG
			2-1			4	0	1		90	14	0	14	7	1.5	-				OK	-	OK		0K
	放流部段差検討	2	2-2	37.1	6 9	4	1	0	0											NG		OK] .	NG
			2-3			5	0	0												NG		ОК		NG
減勢室下流 予備実験 減勢室上流			3-1			4	0	1	0	90	14		14	7		0	0	0	0	OK	-	OK	i L	0K
	河南京下海側接针		3-2	27.4	6 0						11		11	10	4 5	72	0	0	72	OK		OK		ОК
	/成约里下/瓜刚快刮	3	3-3	37.1	6 9						10	0	10	11	1.5	96	0	0	96	OK		NG	-	NG
			3-4							45	14		10	7		48	0	0	48	NG		OK		NG
		4	4-1				0	1	4	90	11					72	24	0	96	NG		NG	4 6	NG
			4-2						6			1	10			72	36	6 0	108	NG		NG		NG
			4-3						8 15 12					10	1.5	72	48 0	0	120	OK		OK		ОК
	減勢室上流側検討		4-4	37.1	69	94										72	90	0	162	OK		OK	-	0K
			4-5									2	9			72	180	0	252	OK		NG	1	NG
			4-6									3	8			72	216	0	288	OK		NG		NG
			4-7						12			2	9			72	144	0	216	OK		OK		0K
			5-1		1 6 9	3		1	12	90						72	144	54	270	OK	OK	OK		0K
	減勢室底部検討	5	5-2	37 1		2 1	0				11	2		10	1.5	72	144	108	324	OK		NG		NG
			5-3	07.11	0 0		ľ					-	Ũ			72	144	162	378	OK	-	NG		NG
		5				0										72	144	216	432	NG		NG		NG
本実験	詳細検討()	王力)		37.1	69	3	0	1	12	90	11	2	9	10	1.5	72	144	54	270	OK	OK	OK	OK	OK

3.予備実験

3.1 測定項目

目視観察および流速測定により、減勢工内の減勢状況 (減勢室内流況、開口部末端流速など)を確認した。

流速測定のうち開口部末端(aライン)では、横断方向 5点(2割水深)でプロペラ式流速計を用いて全実験ケー ス測定した。また擁壁末端(bライン)では、下流水位を 再現したうえで、横断方向9点(2割水深)で電磁流速計 を用いて、ステップ1の全ケースおよびステップ5終了時 点で測定した。

3.2 ステップ1 (開口部幅検討)実験結果

ステップ1では減勢工開口部の幅 B₀をパラメータとして3ケース設定し、b ラインで流速測定を行った(図-3)。

図-3 開口部幅によるbライン最大流速の比較

ここで、ケース 1-2 は開口部幅を上流側 6m から下流側 9m に漸拡した形状である。

その結果、ケース 1-3(B₀=6m)で最大流速が 2.250m/s と基準値(2m/s 以下)を上回り、ケース 1-1(B₀=9m)と ケース 1-2(B₀=6 9m)で、最大流速が 1.620~1.650m/s と基準値(2m/s 以下)をクリアしたことから、施工的に 有利なケース 1-2 を採用した。

3.3 ステップ2(放流部段差検討)実験結果

ステップ2では放流部および開口部の段差(W、W1、W2) をパラメータとして3ケース設定した。

a ラインの流速測定結果によると、ケース 2-1(W=4m、 W1=0m、W2=1m)では最大流速が 2.590m/s と限界流速 (3.429m/s)をクリアし、他のケースでは限界流速を上回 った(図-4)。これは、ケース 2-1 では開口部末端に段 差があるため開口部で常流となり、他のケースでは開口部 末端に段差がないため開口部で射流となったと考えられ る。これよりケース 2-1 を採用した。

3.4 ステップ3(減勢室下流側検討)実験結果

ステップ3では減勢室下流側の寸法(L、L1、)をパ ラメータとして4ケース設定した。

ケース 3-1~3 では、下流側段差を直角(=90°)とし、 減勢室長さを縮小して検討した。その結果、 a ライン流速 はいずれも限界流速をクリアしたが、流況に違いが生じた。 ケース 3-1,2(0,3m 縮小)では減勢室内で適正にローラー (左回り)が形成されているが、ケース 3-3(4m 縮小)で は右回りのローラーが形成されているため、水カーテンの 上下流で水位差が生じることで水面変動が大きくなり、適 正に減勢されなかった(写真 - 2)。

またケース 3-4 では、下流側段差を斜め(=45°)として検討した。その結果、aラインの最大流速が3.430m/sと限界流速(3.429m/s)を上回った(図-4)。

以上の結果より、流速・流況とも満足し内空が最も縮小 となるケース 3-2 を採用した。

写真-2 ステップ3の減勢工流況

3.5 ステップ4(減勢室上流側検討)実験結果

ステップ4では減勢室上流側の寸法(W3、L0)をパラメ ータとして7ケース設定した。

ケース 4-1~4 では、L0=1m とし W3 を 4~15m として検 討した。その結果、ケース 4-1,2(W3=6m 以下)において L0 天端で二次流が起きたことから流速が大きくなり(写 真 - 3)、 a ラインの最大流速が 3.440m/s と限界流速 (3.429m/s)を上回ったため(図 - 4)、適正に減勢され ていないと判断した。また、ケース 4-3,4(W3=8m 以上) では L0 天端での二次流が起きず、a ラインの最大流速が 3.280~3.330m/s と限界流速(3.429m/s)をクリアした。

ケース 4-4,5 では、W3=15m とし L0 を 1~2m として検討 した。その結果、a ライン流速はいずれも限界流速をクリ アしたが、ケース 4-5(L0=2m)では余水管末端で閉塞気 味となり、余水管に水が跳ね返ったため(写真 - 3)適 正な流況ではないと判断した。

ケース 4-6,7 では、W3=12m とし L0 を 2~3m として検討 した。その結果、 a ライン流速はいずれも限界流速をクリ アしたが、ケース 4-6(L0=3m)ではディフレクターから 跳ね返った水流が L0 天端に直接当たるような流れが生じ (写真 - 3)、キャビテーションが懸念されるため、適正 な流況ではないと判断した。また、ケース 4-7(L0=2m) では懸念されるような流況は生じなかった。

以上の結果より、流速・流況とも満足し内空が最も縮小 となるケース 4-7 を採用した。

写真 - 3 ステップ4の減勢工流況 3.6 ステップ5(減勢室底部検討)実験結果

ステップ5では減勢室底部の寸法(₩)をパラメータと して4ケース設定した。

a ラインの流速測定結果によると、ケース 5-4(4m 縮小) では最大流速が 3.930m/s と限界流速 (3.429m/s)を上回 り、他のケースでは限界流速をクリアした(図-4)。

ケース 5-1(1m 縮小)では減勢室内で適正にローラーが 形成されているが、ケース 5-2~4(2~4m 縮小)はローラ ーが形成されずに流下方向の流れが卓越するため(写真 -4)、ケース 5-1より減勢効果が劣ると判断し、ケース 5-1 を採用した。

ケース 5-1 において B ラインで流速測定を行った結果、 最大流速が 1.970m/s と基準値(2m/s以下)をクリアした。 また、衝突板形状やディフレクター形状の妥当性を確認す るため、高水位を再現して流況を確認した結果、余水管末 端で閉塞されず流況的にも問題ないことから、本ケースを 最適形状とした。図 - 5 に最適形状を示す。

写真-4 ステップ5の減勢工流況

- 4.本実験
- 4.1 測定項目
 - ここでは最適形状において、衝突部と減勢室底部の圧力

測定により、減勢工内の減勢状況を確認した(図-5)。 衝突部では、縦断方向4×横断方向3=12点(1m間隔) でマノメータを用いて測定し、最大圧力が測定された箇所 について、圧力計を用いて時系列測定を行った(0.1秒毎、 30秒×3回)。

減勢室底部では縦断方向5×横断方向3=15点(2m間 隔)でマノメータを用いて測定し、最大圧力測定箇所につ いて、衝突部と同様に圧力計を用いて時系列測定を行った。

4.2 実験結果

衝突部(A部)でマノメータによる圧力測定を行った結 果(図-6)、衝突部中央(B2位置付近)および下流側中 央(A4~B4位置付近)で圧力が大きくなり、ディフレク ターとの取り合い部である B4位置で最大となった。

B4 位置で圧力計による測定を行った結果(図-7)、最 大値は 0.082N/mm²(0.83kgf/cm²)と平均値 0.071N/mm² (0.72kgf/cm²)の 1.2 倍程度となった。この最大圧力値 に対して衝突部のキャビテーションを考慮すると、衝突部 に鋼板を設置することで対処可能であると考えられる。

また、減勢室底部(B部)でマノメータによる圧力測定 を行った結果(図-6)C5位置で圧力が最大となったが、 測定位置による圧力の大きさには大きな差は見られなか った。測定値は水深程度の値となっておりディフレクター からの落下による衝撃の影響はほとんど見られず、立坑の 水クッションの効果が現れていると判断できる。

C5 位置で圧力計による測定を行った結果(図-7)、最 大値が 0.071N/mm²(0.73kgf/cm²)と平均値 0.065N/mm² (0.66kgf/cm²)の1.1倍程度となった。

以上より、本形状は圧力に関して問題ない形状であることが確認された。また、当初設計案(幅 B=9m、V=3,394m³)に比べ本形状(V=2,129m³)では容量を 1,265m³(37%)小 さくすることができた。

図 - 7 圧力計による圧力測定結果

5.まとめ

本検討の成果を以下のとおりまとめた。

H発電所余水路において、水理模型実験で「併用型」減 勢工を検討した。その結果、流速・流況の制約条件を満 足し、かつ内空が最も縮小される最適形状を見出した。 最適形状での圧力測定により、本形状の妥当性を確認し た。その結果、衝撃部ではディフレクターとの取り合 い部で圧力が最大となったが、鋼板を設置して対処可 能な圧力であることが分かった。また、減勢室底部で はいずれの箇所も圧力が静水圧と同程度であることを 確認した。

当初設計案(幅 B₁=9m、V=3,394m³)に比べ、当実験で採 用した最適形状(V=2,129m³)では容量を 1,265m³(37%) 小さくすることができた。

6.おわりに

H発電所余水路は平成17年10月から改造工事を行う予 定である。完成後(平成18年3月)に有水試験を実施す る計画であり、有水試験時に余水路減勢工の現地水理計測 (流速・水面計)を実施して、今回の実験結果と比較検証 することで、最適形状の妥当性を検証する予定である。

参考文献

- 1)峯田稔・阿部英夫:余水路減勢工の水理に関する研究
 上岩松一号発電所余水路水理模型実験-(完),北海 道電力㈱総合研究所研究報告第487号、1991.9
- 2) 喜多村雄一他: 芽登第二発電所 水槽余水路改造に関す る水理的検討、電力土木 No.305、pp43-47、2003
- 3) 福原華一:水力発電所余水路立坑型減勢工の水理設計法、 電力中央研究所研究報告 No. U88018、1988.9