超音波ドップラー流速分布測定法を用いた河川の流れ構造の測定

Measurement of flow structure in a river by the Ultrasonic Velocity Profiler (UVP)

北海道大学大学院	機械科学専攻	正	員 吉田	静男	(Shizuo Yoshida)
北海道大学大学院	機械科学専攻		横山	韾	(Kaoru Yokoyama)
北海道大学大学院	機械科学専攻		大窪	智行	(Tomoyuki Ohkubo)
北海道大学大学院	機械科学専攻		小嶋	慎哉	(Shinya Kojima)
北海道大学大学院	機械科学専攻		武田	靖	(Yasushi Takeda)

1. 序論

河床変動や河道の侵食・変形といった現象は河川工学 において重要なテーマであり,古くから研究が行われて きた.上記に代表されるような河川での物理現象を実験 的に解明するためにはより詳細な流れの情報,特に空間 構造を得ることが求められる.そのため近年では ADCP¹⁾, PIV²⁾といった新しい測定技術が河川測定にも応用され るようになってきた.しかし前者は現状では空間分解能 が大きく,詳細な流速分布を得ることは難しい.また後者 は性質上河川内部の流速分布を得ることが困難である.

そこで本研究では、より詳細な時空間の流れ構造を測 定する技法として開発された超音波ドップラー式流速分 布測定法(以下 UVP)を用い、河川測定への応用の可能 性について検討した.

2. UVPの基本原理³⁾

図1にUVPの基本原理の概念図を示す.超音波トラン スデューサから基本周波数 f₀を持つ超音波パルスを流 体中に発射し,流体中から反射されるエコーを同一のト ランスデューサでとらえる.

超音波パルスの往復時間から測定点の位置を決定し、 その点におけるエコーのドップラー信号より速度を算出 する.測定点を複数にすることにより,測定線上の速度分 布が同時に得られる.得られるのは速度1成分の速度分 布であり,順流・逆流が判別できる.この作業を1/fprf周期 で繰り返すことによって時系列での測定ができる.

時間分解能は数十から数百ミリ秒程度である.空間分 解能は1mm程度から設定することができ,ADCPと比較 して非常に小さい.また測定線を複数本にすることによ り,その交点で速度ベクトルが得られ,流動場全体をベク トル量として測定(マッピング)することもできる.

表1に最大測定距離と最大測定流速の関係を示す.

表1 最大測定距離と最大測定速度の関係

$f_0(MHz)$	最大測定距離(mm)	最大測定流速(mm/s)
0.5	100	5264
	6000	91
1	100	2632
	3000	91
2	100	1316
	1500	91

*水に対する値

3. 実験室開水路での測定

3.1 実験水路及び測定条件

図 2 に実験用開水路の概略を示す.オーバーフロータ ンクによって定常流を実現しており,流量は手動のバル ブによって調節する.水路には上流側にタンク,下流側に 堰が設けられており,水路幅は 620mm である.測定位置 は堰から上流側に 2700mm の位置であり,水路中央に対 して対称流であることを仮定し,壁面から中央までの 30 点で測定を行った.使用したトランスデューサの基本周 波数は 2MHz である.空間分解能の設定は 3.8mm,時間分 解能は 0.17s であり,連続 512 プロファイルの平均を取っ た.今回は同一流量において底面に何もない場合,上流側 にブロックがある場合の 2 ケースについての測定例を示 す.図 3 にブロック寸法・設置図を示す.

図3 ブロック寸法・設置図

3.2 測定結果

図 4 に各々の場合の水路中央における鉛直方向流速分 布を示す.縦軸が速度,横軸がトランスデューサからの距 離でドットがその位置での平均流速,バーが流速の標準 偏差を示している. グラフ左端がトランスデューサ先端 であり,速度が0となる位置が底面である.UVPではトラ ンスデューサに向かってくる速度成分を負で検知する. 本実験ではトランスデューサを上流側に傾けて設置して おり,そのため速度が負で検出されている.ブロックがあ る場合の分布では途中で流速の符号が反転しているが, これはブロックによってトランスデューサに対する流れ の向きが逆転したことを意味する.

このような流速分布を各点で測定することによって図 5 に示すような水路横断面での流れ方向流速分布が得ら れる.図は左がブロックなし,右が上流にブロックがある 場合である.縦軸が水深,横軸が壁からの距離で壁面から 水路中央までの領域を表している.速度の大きさはカラ ープロットによって示されている.この図から底面がフ ラットな状態の場合は断面でほぼ一様な流速であること が解る.一方ブロックがある場合,どの領域で逆流となっ ているかを一目で把握することができる.

図4 水路中央平均流速分布(左:ブロックなし)

図5 水路横断面流速分布(左:ブロックなし)

4. 実際の小川での測定

図6 小川測定部と底面水草領域

4.1 測定対象および測定条件

次に実際の小川での測定を行った.測定対象の小川の 写真を図 6 に示す.寸法は横幅が約 1.7m,水深が約 0.1m である.写真左側から約 1.3m では河床は直径 20mm 程度 の小石であり,右端から約 0.4m は水草である.また測定 地点上流には岩が置かれている.トランスデューサは上 流側に傾けて設置し,測定は 0.1m 間隔で 17 点行った.使 用したトランスデューサの基本周波数は 2MHz である. 空間分解能の設定は 1.5mm,時間分解能は 0.13s であり, 連続 1024 プロファイルの平均を取った.なお,川の上流に 設けた堰の値を観測したところ流量は安定しており,定 常流に近い流れであると言える.

4.2 測定結果

実験室開水路とは違った実際の川での特徴的な構造の 測定結果を示す.図 7 に底面が小石の場合と水草の場合 における時系列流速分布を示す.縦軸はトランスデュー サからの距離,横軸は測定開始からの時間である.また流 速はカラープロットによって示される.流速の向きは実 験室の場合と同じく負の速度が順流を示している.小石 の場合を見ると速度が0となる位置が時間的に変化して いないことがわかる.すなわち測定中に河床の変動がほ とんどないと言える.一方底面が水草の場合は速度が 0 となる位置が大きく変動している.これは流れによる水 草の変動を捕えていると解釈することができる.次に図8 に横断面流速分布を示す.縦軸がトランスデューサから の距離、横軸が横断方向位置である、流速は順流が正とな るように符合を入れ替えている.また図の曲線はポール により測定した水深である.横断位置 0.9m 付近で逆流と なっているのは、この位置が岩の後流部分であり巻き込 みの流れを測定しているためである.このように断面流 速分布から河川のどの領域で流速が速いのかという情報 が容易に得られ、流れ構造の理解に非常に有効である.

5. 結論

UVP は速度 1 成分であれば効率的かつ詳細に流速分 布の測定を行うことができる.また,時空間測定が可能な ことから単に流速分布にとどまらず様々な流れ構造の理 解に有用であり,河川測定においてもその応用範囲は非 常に広いと考えられる.

参考文献

 1)喜澤・井出:河川流量観測における新測定法の提案に ついて,河川技術論文集,Vol.7, pp.251-256,2001
2)藤田・河村:ビデオ画像解析による河川表面流測定の 試み,水工学論文集,Vol.38, pp.733-738,1994
3)Met-flow: UVP Monitor-Model UVP-XW, User's guide,pp.2.1-3.15,2000