洪水波を想定した中礫掃流砂量測定実験

EXPERIMENTAL STUDY ON BED LOAD TRANSPORTATION UNDER FLOOD FLOW CONDITION

北海道開発土木研究所 環境水工部	正
北海道開発土木研究所 環境水工部	正
北海道開発局 石狩川開発建設部	正

桑村貴志 (Takashi KUWAMURA) 昌

昌 渡邊康玄 (Yasuharu WATANABE)

員 小川長宏 (Takehiro OGAWA)

1. 序論

洪水時に掃流される土砂の動態は未だ不明な点が多い。 掃流状態で河道内を通過する土砂量の推定には、一般に 掃流砂量式が用いられている。河床における小粒径の土 粒子の移動に関する研究は現在まで数多く行われており、 小粒径の土砂の移動形態は基本的に既存の掃流砂式に従 うものと考えられる。しかし、土砂の流出が最も課題と なる河川上流域や砂防区域での代表的な粒径である中礫 の移動を対象とした研究は少ない。中礫を対象とした掃 流砂量式の検証は喫緊の課題であり、これまでに著者ら は、高速循環水路を用いた定常流時の中礫掃流砂実験を 実施し,その実験結果について既存の掃流砂式の適合性 について検証を行なってきた¹⁾。

本研究では前回の研究をさらに進めて、洪水時の水位 上昇期と水位下降期における中礫の移動特性の把握と掃 流砂量式の適合性の検証を目的として実施した掃流砂実 験の結果の考察と代表的な掃流砂量式の検証を行なうも のである。

2. 中礫掃流砂実験

2.1 実験の概要

実験には延長 24.0m、幅 1.0m の高速循環実験水路を 用いた。水路は閉水路時で最大 3.0m3/s の水を循環させ る能力を有している。実験は開水路状態で行ない、水位 上昇期と水位下降期に分け、均一粒径実験と混合粒径実 験をそれぞれ実施した。

(1) 実験の諸元

実験の諸元を表-1 に示す。実験は、均一粒径材料を 用いた実験を3回(U-1-1~3)、混合粒径材料を用いた実 験を2回(U-2-1~2)実施した。ここで、Q:通水流量、h: 平均水深、 /b: 河床勾配、 /e: エネルギー勾配、 D50: 使用 した礫材料の通過百分率 50%に対応する粒度、7:総通水 時間である。U-1-1、U-1-2、U-2-1 は流量を増加させた 水位上昇期の実験であり、U-1-3、U-2-2 は流量を減少 させた水位下降期の掃流現象を観測するための実験であ る。なお、U-1-1 と U-1-2 は同条件で実施され、結果も ほぼ同様であったため、U-1-1 の結果は省略する。実験 時には、流量の変化に応じて所定量を水路上流端の補給 穴から連続的に投入して給砂を行なっている。また、1 ケースの実験を実施するたびに、人力で河床を平坦に敷 き均し初期河床を作成しなおしている。

(2) 水位変化速度(洪水波形)と流量の設定

山地小流域の出水特性を把握するために鵡川水系パン

表-1 実験諸元

0.001 0.01 01 1 10 100 1000 mm 図-1 実験に使用した砂礫の粒度分布

ケシュル川で著者らが実施した洪水観測において観測さ れた水位上昇期における水位変化速度は約 0.14m/h、洪 水ピーク時の無次元掃流力 *は 0.16 であった。今回 の実験ではできるだけ実際の上流域河川の掃流砂現象を 再現することを目的としているため、このときに観測さ れた水位変化速度と実験(水位上昇期・下降期)の水位 変化速度が同等となるように実験流量の変化量を設定し た。また、パンケシュル川での洪水ピークの *とほぼ 等しくなるように実験時の最大流量を 1.5m³/s とした。 また、河床材料の限界掃流力相当となる流量 0.2m3/s を 最小流量とした。ただし、均一粒径実験(U-1-1,U-1-3) では、事前に実施した予備実験において 0.4m³/s まで土 砂の移動がほとんど確認されなかったため、最小流量を 0.5m³/s とした。また、混合粒径実験(U-2-1,U-2-1)の 予備実験において 1.5m³/s を通水したところ、掃流砂量 が多く水路下流端の掃流砂採取用の管路部で土砂の閉塞 が見られた。そのため、混合粒径実験では最大流量を 1.4m³/s としている。実験時には各流量における水理量 や掃流砂の測定を行っているが、それらの観測には1回 当り 12min の時間が必要となった。そのため、急流河川 を対象としていることも考慮に入れ、流量調整は 0.1m³/s ずつ 12min 間隔で流量を変化させた。このため、

実験は完全な洪水波を模したものではなく擬似的な洪水 波として実験を行なっている。

(3) 実験に用いた河床材料

実験に用いた河床材料は、河川上流域の現地河床材料 と同じような粒径分布を持つ玉石形状の砂礫を用いるこ ととした。今回の実験では北海道の代表的な急流河川で ある札内川と支川戸蔦別川の合流点(河床勾配 1/214) における河床材料の粒径分布を参考として、図-1 に示 すように、混合粒径と均一粒径の2種類の河床材料を用 いて実験を行った。もともとの現地材料に含まれている 細粒土砂は通水時には濁りとなって実験の支障となる。 そのため、浮遊状態で流下すると想定される 5mm 以下の 粒径の土砂はあらかじめ除去した。実験に先立って、原 料として搬入された玉砂利を全てフルイ分けし、所定の 粒度分布となるように分級済みの各粒径材料を調合して 実験に用いる混合粒径材料を準備した。また、均一粒径 材料は、混合材料の代表粒径(D50=27.78mm)と粒径がほ ぼ等しいものを原材料から選別し使用した。これらの材 料を各実験の初期河床の作成と給砂に用いた。

2.2 測定項目

水位・河床高測定

強化ガラス製の実験水路側壁からの透視により、水 位・河床高の測定を行なった。左右壁面の縦断方向 1m 間隔にスケールを貼り付け、実験時に目視で計測した。

(2) 流速測定

電磁流速計により深度別に流速計測を行なった。

(3) 掃流砂測定

クレーンに吊り下げた掃流砂採取網を水路下流端に取 り付けて掃流砂を全量捕捉し、掃流砂量の測定と土質試 験を行なった。採取網を水路下流端に取り付けて 120 秒 間の流下土砂を捕捉した。土質試験は、比重、粒度につ いて試験を行なっている。

2.3 測定結果

(1) 水理量

実験時に観測された河床勾配、エネルギー勾配、水面 勾配、流量を図-2 に示す。左図は均一粒径実験、右図 は混合粒径実験の結果である。実際の実験では、水位の 上昇期と下降期に分けて実験を行なっているが、ここで は均一粒径または混合粒径における上昇期と下降期の二 つの実験結果をつなげて表した。図中に示す河床勾配と 水面勾配は、水路全区間で測定された河床高、水位高を 最小二乗法により求めた近似直線の傾きである。また、 エネルギー勾配は、水深と流量から逆算した平均流速か ら算出した速度水頭を水深に足した水頭の勾配である。

均一粒径の実験では、水面勾配は流量の増加に伴い変 動している。また、変動幅は小さいがエネルギー勾配と 河床勾配も同様の傾向を示した。

混合粒径の実験では、流量が約 1m³/s を超えて流れて いるときには河床勾配やエネルギー勾配が大きく変動し ている。また、水面勾配は流量と必ずしも比例関係にな く、流量ピーク時以外でも大きな水面勾配となっている 箇所が確認できる。混合粒径の実験では後述する掃流砂 量の値にばらつきが大きく河床も安定しずらかった。そ のため、均一粒径実験に比べて水理量が不安定となって いる。

水位上昇期と水位下降期との各勾配を比較すると、わずかに、水位上昇期の水面勾配が水位下降期の水面勾配 を上回るようであるが,全体的に明確な差は認められない。

(2) 流速分布

レーザー流速計により計測された横断測線上の流速分 布を図-3 に示す。実験時の水の濁りによりレーザー光 が水路の中心まで届かなかったため、水路中心から右側 壁方向に0.25,0.35,0.45m 離れた位置で流速を計測した。 U 方向流速は縦断下流方向の流れを正としている。流速 分布形状はほぼ対数則分布となっているが、水路中心か ら水路壁面に向かうほど流速が低下している。今回の実 験では最大流量時の水深と水路幅の比は約0.6 であり、 流速分布に側壁の影響が働いていると考えられる。その ため、掃流砂量式の検討にあたっては側壁の影響を考慮 することとした。

(3) 実験時の河床形態

水路側壁のガラス面からの目視では、通水時に小規模 河床波は観測されなかった。また、実験時に観測された 水理量から芦田・道上⁴⁾の河床形態判定法を用いて河床 形態の判別を行った。図-4 にその結果を示す。ここで 図中の *Rb/d* は側壁補正した径深 *Rb* と代表粒径 *d* の比、

*は無次元掃流力である。均一粒径実験を U-1, 混合 粒径実験を U-2 として示し、判定に際して平均粒径を用 いている。判定では、U-1,U-2 ともに Transition に非 常に近い Upper regime の領域である。今回の実験では 全てのケースにおいて通水中には小規模河床波は発生せ ず、平坦の河床形態であったと考えられる。

(4) 均一粒径実験時の掃流砂

水路下流端の採取網により捕捉された掃流砂の無次元 掃流砂量 qb^* を図-5 に示す。 qb^* は捕捉された砂礫の見 かけ体積 V に $1-\lambda(\lambda: 空隙率)$ を乗じた実体積 Vを採 取時間 T で除した単位幅当りの流砂量を無次元化した 値である。同一流量時においては、水位下降期(U-1-3) よりも水位上昇期(U-1-2)の掃流砂が多いと当初想定し たが、今回の実験条件の範囲では上昇期と下降期に明確 な差は現れていない。

(5) 混合粒径実験時の掃流砂

無次元掃流砂量、平均粒径を図-6 に示す。図-6(左) に示す無次元掃流砂量は流量と大まかな比例関係にある ものの、流砂量の値のばらつきが大きい。また、図中に 矢印で示す 1.4m3/s 時の掃流砂量は掃流力が最も大きい 条件であったにも関わらず非常に少ない。このときの河 床形状は安定勾配に達せずに堆積傾向にあり、下流端ま での到達量が少なかったものと推測している。

図-6(右)に掃流砂の平均粒径を示す。図中の点線は、 河床・給砂材料の平均粒径(27.78mm)である。掃流砂 の平均粒径は、流量毎に粒径が大きく変動している。水 位上昇期(U-2-1)と水位下降期(U-2-2)を比較しても、そ れぞれの明確な変動傾向はないようである。非定常流実 験では河床に存在する砂礫が大粒径・小粒径のものに分 級されながら掃流されているとも考えられるが、その現 象を解明するためにはさらに詳細な観測が必要である。

3. 掃流砂量の検討

3-1. 掃流砂量の計算

掃流砂量について観測値と掃流砂量式による計算値の 比較及び検討を行った。

掃流砂量式については、現在まで多くの計算式が提案 されている。掃流砂の運動は、流水と河床面との境界近 傍のごく薄い層で発生する複雑な現象であるため、流砂 の運動機構のモデル化ないしは次元解析法的な手法によ って流砂量式が誘導されている。ここでは次元解析モデ

図-7 掃流砂量の計算値と観測値の比較(均一粒径実験)

ルとして Meyer Peter -Muller の式³⁾、抗力モデルとし て芦田・道上の式⁴⁾、そして揚力モデルとして佐藤・吉 川・芦田の式⁵⁾を用いて、均一粒径実験と混合粒径実験 における掃流砂量計算を行った。また、前述したように 実験水路上に河床波は形成されなかったとして、流れの 水理量から算定された抵抗力がそのまま河床の掃流力と 見なした。計算に用いた掃流砂量式を以下に示す。 Meyer Peter -Mulerの式は次式で表される。

$$q_{b^*} = 8(\tau_* - \tau_{*c})^{1.5} \tag{1}$$

芦田・道上の式は次式で表される。

$$q_{b^*} = 17\tau_{*e}^{3/2} \left(1 - \frac{\tau_{*c}}{\tau_*}\right) \left(1 - \sqrt{\frac{\tau_{*c}}{\tau_*}}\right)$$
(2)

また佐藤・吉川・芦田は次式で表される。

$$q_{b^*} \cdot \sqrt{sgd^3} = \frac{u_*^3}{sg} \cdot \frac{1}{1 + 8\left(u_{*c}^2 / {u_*}^2\right)^4} \cdot f(n)$$
(3)

ここで $*_c$:無次元限界掃流力で、 $*_c$ については平均 粒径 d_m を代表粒径とした掃流砂量計算の場合は岩垣の 式⁶⁾を、粒径別の掃流砂量計算の場合は Egiazaroff の 式⁷⁾と平野と芦田・道上⁴⁾が $d_i/d_m \leq 0.4$ の範囲におい て提案した(4)式で表される式を用いて導いた。

$$\frac{d_i}{d_m} > 0.4 : \frac{{u_{*ci}}^2}{{u_{*cm}}^2} = \left[\frac{\log_{10} 19}{\log_{10} 19(d_i / d_m)}\right]^2 \left(\frac{d_i}{d_m}\right)$$
(4)

ここで d_i :与えられた粒径範囲 i の代表粒径、 u_{*cm} : 平均粒径 d_m に対する摩擦速度であり、 d_m は岩垣の方 法により求めた。掃流砂量の推定には、側壁の影響を考 慮し Einstein の方法²⁾を用いて、側壁の影響を補正し た径深 R_b を用いた。

3-2. 掃流砂量の観測値と計算値の比較

(1) 均一粒径として計算した場合

実験における掃流砂量観測値の無次元掃流砂量 qb*と 各掃流砂量式による計算値の結果を図-7 に示す。均一 粒径実験(U-1-2,3)では、全ての掃流力の範囲において 佐藤・吉川・芦田の式による計算値が観測値とよく一致 していた。Meyer Peter -Muller の式と芦田・道上の式 の計算値はほぼ同じ値を示し、実験値と比較すると大き な値を示した。混合粒径実験(U-2-1,2)では、掃流力が

平成16年度 土木学会北海道支部 論文報告集 第61号

小さいときには、均一粒径実験と同様に佐藤・吉川・芦 田の式による計算値と観測値は近い値を示す。しかし、 掃流力が大きくなり流砂量が増大してくると、観測値は 佐藤・吉川・芦田の式による計算値を上回り、佐藤・吉 川・芦田の式と Meyer Peter -Mullerの式、芦田・道上 の式による計算値との中位にあたる値を示した。

(2) 混合粒径とした場合

水位上昇期と水位下降期おける混合粒径実験時の掃流 砂量の観測値と計算値について流量毎に示したものが 図-8,-9である。Meyer Peter - Mullerの式、芦田・ 道上の式による掃流砂量の計算値は観測値を大きく上回 っている。この二式により計算された粒度分布は、観測 値の粒度分布に比べて細粒の砂礫の分布が卓越している。 今回の実験では、細粒の掃流砂が過大に計算されるため に、二式の掃流砂量計算値が観測値を大きく上回ったも のと考えられる。一方、佐藤・吉川・芦田の式の計算値 は流砂量,粒度分布ともに観測値と概ね合致している。

4. 結論

中礫を対象とした掃流砂実験を実施することにより、 一定の範囲の実験条件における掃流砂の移動量を計測す ることができた。均一粒径実験では水位上昇期、下降期 ともに掃流量は水位に比例して変化した。混合粒径実験 については、理論的な検証からは小規模河床波は発生せ ずに平衡平坦河床となっていたようであるが、通水中に おける掃流砂の量や平均粒径の変動が大きく河床高も安 定しなかった。

掃流砂量式の検証では、3 つの理論モデルの代表的な 掃流砂式を用いて検討を行った。結果として均一粒径実 験・混合粒径実験ともに、揚力モデルを用いた佐藤・吉 川・芦田の式が最も適合する結果となった。混合粒径実 験においては、粒度分布についても佐藤・吉川・芦田の 式は観測値に概ね適合していた。この揚力モデルは、河 床砂礫に作用する力積と掃流層での重力の力積とが平衡 すると考えたモデルであり、一般にこの式で算定される 掃流砂量は過小評価であることが多いとされている 10)。 しかし、各流砂量式とも式の導入にあたっては最終的に は実験値に合うように係数を合わせている。今回の実験 結果に佐藤・吉川・芦田の流砂量式が良く適合していた 物理的な理由については水理学的な見地からのさらに詳 細な検証が必要であり、今後の課題としたい。

謝辞:本研究は国土交通省北海道開発局の受託業務によ る補助を受けて行ったものである。記して謝意を表す。

参考文献

 小川長宏,渡邊康玄:河川上流域の中礫を用いた掃流
砂量測定実験,水工学論文集,第 47 巻,土木学 会,pp535~540,2003

2)Einstein, H. A.:Formulas for the transportation of Bed Load, Trans. ASCE, Vol. 107, No. 2140, pp561~577, 1942

3)Meyer-Peter, E. and Muller, R.:Formulas for bedload transport, Proc. 2nd Cong. ITAH, Stockholm, Sweden, pp. 39~64, 1948

4) 芦田和男,道上正規:移動床流れの抵抗と掃流砂量に
関する基礎研究,土木学会論文報告集,第206号,pp59~69,1972

5)佐藤清一,吉川秀夫,芦田和男:河床砂礫の掃流運搬 に関する研究(1),建設省土木研究所報告,第 98 号, 1958

6)岩垣雄一:限界掃流力に関する基礎研究,土木学会論 文集,第41号,土木学会,pp1~21,1956

7)Egiazaroff, I. V.: Calculation of Nonuniform Sediment Concentrations, Proc. ASCE, Vol. 91, pp225 ~ 247, 1965