洪水時における複断面河道の浮遊物質濃度の輸送

Numerical simulation of suspended solid transportation during the 2003 flood of the Saru river

北海道開発土木研究所	正員 吉川泰弘(Yasuhiro Yoshikawa)
	正員 渡邊康玄(Yasuharu Watanabe)
	正員 島田友典(Tomonori Shimada)

1.はじめに

洪水時には水とともに土砂も流下する.この中で粒径 の細かいウォッシュロードと呼ばれる土砂は,通常流水 の下に位置する河床中にはほとんど存在しないことから, 河床変動に寄与せずそのまま海まで流下するとされてい た.しかし,佐藤・渡邊¹⁾は,鵡川における1998年融雪 出水でのSSの観測結果を用いてSSの輸送について洪水 中においても河岸堆積物との交換が行われていることを 指摘している.また,渡邊・新目ら²⁾は同じ洪水におけ るSSと堆積物の栄養塩類について分析し,洪水中に採 水されたSSと洪水後の堆積物に同一の割合で栄養塩類 が付着していることを示し,両者が同一のものであるこ とを示した.このことは,河川環境を考える上でもSS の挙動を明らかにすることが極めて重要なこととである ことを示すものである.

2003年8月洪水時の沙流川におけるSS採水観測³⁾は, 二風谷ダム下流において図-1に示す6地点において行わ れている.これらには支川からの土砂,物質流入の影響 を把握するために行われた, 亜別川とシラウ川における 本川との合流点近傍での観測地点も含まれている.観測 は,降雨から流出までの時間が早い支川については8月 9日 2:00 から,その他の観測地点では8月9日 9:00 より 開始されておりその後ほぼ2時間ピッチで,洪水立ち上 りから毎時間観測へと移行している.しかしながら,観 測の安全性の問題によりピークを挟み観測が 12 時間以 上中断されている.小川・渡邊 4)は,この欠測期間にお ける SS 成分の挙動を推定するため,洪水時における SS 成分の挙動特性である2価性を考慮しつつ実測値の外挿 により洪水期間全体にわたる SS の時間変化を推定して いる.図-2は,その推定結果の一例である.図-3に示さ れるこの結果を用いた土砂収支は洪水前後での河道や海 域での測量結果と概ね一致しているが,洪水中の挙動に ついては確認されていない.

本研究では,高水敷高をはるかに上回る水位が生じた 場合の SS の洪水時の挙動を把握するため,高水敷から の浮遊砂の浮上沈降を考慮した場合の非定常一次元河床 変動計算を行ったものである.なお,観測結果により, 2003 年 8 月洪水における SS の輸送に関して,支川の影 響がほとんど無いことが示されている⁴⁾ことから,今回 の検討では,支川については無視している.また,荷菜 大橋(KP16.0)高水敷にて洪水前後で河床材料調査を行っ ている(図-4).洪水後に細かい粒径が多く堆砂し高水敷 の流砂の交換があった事がわかる.このため高水敷の浮 遊砂浮上沈降を考慮することは極めて重要である.

図-1 沙流川の模式図と観測箇所

図-2 沙流川橋地点 流量-SS 負荷量相関図

図-4 荷菜大橋の高水敷粒径加積曲線図(洪水前後)

2.計算手法

今回,洪水再現計算に用いた手法について説明を行う. なお,浮遊物質と低水路・高水敷との交換や堆積・洗掘 による流れの変化を取り込むため,混合粒径による河床 変動計算を行い,流れの非定常計算においてはリープフ ロッグ法を用いて差分計算をおこなった.

また,計算するにあたり初期条件として上流端では, 二風谷ダムからの放流量,流出SS濃度を与え,河床高 は平成13年測量結果,低水路の粒径は平成15年調査結 果高水敷の粒径は平成16年洪水前調査結果をそれぞれ 与え,河口潮位は苫小牧西港の値とした.KP19.8~20.8 の区間は岩盤があり河床変動なしとした.また,横断形 状は平成13年測量のデータを低水路及び高水敷に分け それぞれ矩形断面とした.計算対象の期間は平成15月9 日10:00~11日9:00とした.

非定常定流の運動方程式および連続の式は,それぞれ (1)および(2)式で表される.初期値は不等流計算の結果を 利用した.なお,マニングの粗度係数は低水路0.03,高 水敷0.05とした.

$$\frac{1}{g}\frac{\partial}{\partial t}\left(\frac{Q}{A}\right) + \frac{\alpha}{2g}\frac{\partial}{\partial x}\left(\frac{Q}{A}\right)^2 = -\frac{\partial(h+\eta)}{\partial x} - \frac{n^2}{R^{4/3}}\left(\frac{Q}{A}\right)^2 \qquad (1)$$

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = 0 \tag{2}$$

Q:流量,g:重力加速度,t:時間,h:水深, η :河 床高,x:縦断距離,n:マニングの粗度係数,R:径 深,A:断面積, α :エネルギー補正係数

河床変動計算は,掃流砂と浮遊砂を考慮し (3)式で表 される流砂の連続式により河床変動量を算出する.高水 敷の変動についても(3)式により計算を行ったが,高水敷 内の樹木,草地を考慮し掃流砂は出現しないものと仮定 し後述する方法で浮遊砂のみを計算に取り込んだ.

$$\frac{\partial \eta}{\partial t} + \frac{1}{1-\lambda} \left\{ \frac{1}{b} \frac{\partial \sum_{i} (q_{bi}b)}{\partial x} + \sum_{i} (q_{sui} - w_{fi}C_{bi}) \right\} = 0 \quad (3)$$

 λ :河床材料の空隙率(0.4), q_b :単位川幅当りの掃流 砂量, q_{su} :単位時間単位面積当りの河床からの浮遊砂浮 上量, w_f :浮遊砂の沈降速度, C_b :河床付近の浮遊砂 基準点濃度,b:川幅,添え字iは粒径 d_i 掃流砂量式は,(4)式で表される芦田・道上⁵⁾の式を用 いた.

$$\frac{q_{bi}}{\sqrt{sgd_i^3}} = 17 p_i \tau_{*i}^{,3/2} \left(1 - \frac{\tau_{*ci}}{\tau_{*i}} \right) \left(1 - \frac{u_{*ci}}{u_*} \right)$$
(4)

 $s:砂の水中比重,<math>p_i:$ 粒径 d_i の粒子が河床面に占める 割合, $\tau_*^i:$ 有効無次元掃流力, τ_{*c} :無次元限界掃流力, $\tau_*:$ 無次元掃流力, $u_{*c}:$ 限界摩擦速度, $u_*:$ 摩擦速度

粒 径 別 の 限 界 摩 擦 速 度 は , (5) 式 で 表 さ れ る *Egiazaroff*・浅田⁶⁾の式を使用した .

$$\frac{{u_{*ci}}^{2}}{{u_{*cm}}^{2}} = \left\{ \frac{\log 23}{\log \left(21\frac{d_{i}}{d_{m}} + 2\right)} \right\}^{2} \frac{d_{i}}{d_{m}}$$
(5)

 u_{*cm} :河床の平均粒径 d_m に対する限界摩擦速度であり、ここでは岩垣の式 71 を用いた。

浮遊砂は,単断面の場合(6)式で表される粒径別の浮遊 砂濃度の連続式を用いるが,高水敷の浮遊砂の浮上沈降 による浮遊物質濃度への影響を考慮した(12)式を用いて 計算することとした.

今回の目的である複断面において,高水敷の浮遊砂の 浮上沈降による浮遊物質濃度への影響を計算式に取り込 むためには横断方向の拡散も考慮する必要がある.しか し今回の検討では,簡単のため横断方向の拡散は瞬時に 生ずるものとして断面内では高水敷も低水路も同一の濃 度として計算を行うこととし,(6)式で表される粒径別の 浮遊砂濃度の連続式に高水敷での浮上・沈降量を考慮し た(12)式に変更した.これは高水敷との浮遊砂の出入り を表現するために,(12)式の右辺代3項を与えることを表 す.また,時間・距離の偏微分項に含まれる値である水 深・幅・流速の乗数においては,低水路・高水敷の各乗 数の和を取り浮遊物質濃度を求めた.渦動粘性係数 *e* に おいても同様とした.

$$\frac{\frac{\partial}{\partial t} \left(\langle C_i \rangle hb \right) + \frac{\partial \left(uhb \langle C_i \rangle \right)}{\partial x} \\ = \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial \left(\langle C_i \rangle hb \right)}{\partial x} \right) + q_{sui}b - w_{fi}C_{bi}b$$
(6)

$$\frac{\partial}{\partial t} \left(\langle C_i \rangle hb \right) + \frac{\partial (uhb \langle C_i \rangle)}{\partial x} \\ = \frac{\partial}{\partial x} \left(\varepsilon \frac{\partial \left(\langle C_i \rangle hb \right)}{\partial x} \right) + b \left(q_{sui} - w_{fi} C_{bi} \right) + b_e \left(q_{suei} - w_{fi} C_{bei} \right)$$
(12)

 $\varepsilon = 1/6 \kappa u_e h$, κ : カルマン定数, $\langle \rangle$:水深平均値を表 し, 浮遊砂物質濃度(断面水深平均浮遊砂濃度) $\langle C_i \rangle$ は次 頁の(8)式で表す. b_e : 高水敷幅, q_{sue} : 単位時間単位面 積当たりの高水敷浮遊砂浮上量, C_{be} : 高水敷底面付近の 浮遊砂基準点濃度,添え字iは粒径 d_i 浮遊砂浮上量式は低水路・高水敷とも(7)式で表される 板倉・岸の浮遊砂浮上量式⁸⁾を用いた.なお,(7)式中の *K*は低水路・高水敷ともに0.008を与えた.

$$q_{sui} = p_i K \left(\alpha_* \frac{\rho_s - \rho}{\rho_s} \frac{g d_i}{u_*} \Omega_i - w_{fi} \right)$$
(7)

また,Ω,は次頁の(9)式で表される.

$$\langle C_i \rangle = \frac{C_{bi}}{\beta} \{ 1 - \exp(-\beta) \}$$
 (8)

$$\Omega_{i} = \frac{\tau_{*i}}{B_{*i}} \frac{\int_{a}^{\infty} \xi \frac{1}{\sqrt{\pi}} \exp(-\xi^{2}) d\xi}{\int_{a}^{\infty} \frac{1}{\sqrt{\pi}} \exp(-\xi^{2}) d\xi} + \frac{\tau_{*i}}{B_{*i} \eta_{*}} - 1$$
(9)

 ρ_s :浮遊粒子の密度, ρ :流体の密度, u_* :有効摩擦 速度, B_* :揚力算定の際の速度に摩擦速度を適用す るための換算係数, $\beta = w_{ji}h/\varepsilon$, $\xi = z/h$, $\eta_* = 0.5$, $\alpha_* = 0.14$, $a = B_{*i}/\tau_{*i} - 1/\eta_*$ である.

粒径別の流砂の連続式においては,SS 負荷量が距離 的・時間的変化する値であるため,その偏微分項を含む (10)式で計算した.

$$\delta \frac{\partial p_i}{\partial t} + p_i^* \frac{\partial \eta}{\partial t} + \frac{1}{1 - \lambda} \left\{ \frac{1}{b} \frac{\partial (q_{bi}b)}{\partial x} + q_{sui} - w_{fi}C_{bi} \right\} = 0 \qquad (10)$$

 δ :交換層であり,河床材料の交換が行われる厚さを現 す. p_i^* については,初期河床に対する計算河床高の関 係により(11)式で与えた.

$$p_i^* = \begin{cases} p_i & ; \quad \partial \eta / \partial t > 0\\ p_{i0} & ; \quad \partial \eta / \partial t < 0 \end{cases}$$
(11)

p_{i0}: 粒径*d_i*の粒子が原河床に占める割合である. (10)式は,河床が洗掘を受けた場合,初期の粒径分布を 与えることを表す.交換層の厚さは今回河床材料の最大 粒径である 75mm を与えた.

3.計算結果

沙流川大橋(KP2.8)において,今回洪水期間中観測した SS 濃度[mg/L]とその値から推定した SS 濃度[mg/L]に対 する,高水敷の浮遊砂の浮上沈降を考慮した場合しない 場合の計算結果を図-5 に表す.どちらの計算も推定 SS 濃度[mg/L]のピークとは合わない結果となった.また, 立ち上がりの傾向はつかめているが,ピーク付近から減 水期間について観測・推定 SS 濃度[mg/L]がある一定の値 を維持しているのに対して,計算では流量上昇とともに SS 濃度[mg/L]が上昇傾向にあるとともに流量の減少と ともに濃度も減少する結果となった.この違いについて は微細粒子の輸送に関し,極めて重要な現象を表してい るものと考えられる.ピーク付近での観測値が欠測とな

シルト(0.075mm)の SS 濃度[mg/L]

っていることから充分な機構の解明は,現在のところ出 来ないが,計算結果と観測値の比較から検討を行うこと とする.

粒径別の SS 濃度[mg/L]について,洪水時の観測結果か ら得られた粘土(粒径 0.005mm)とシルト(粒径 0.075mm) の SS 濃度[mg/L]に対する高水敷浮上沈降有り無しの計 算結果を図-6,7 に示す.

観測結果は、細かい粒径の粘土よりシルトの方が流水 中に多く含まれる事が分かる.これに対し計算結果は、 同程度の SS 濃度[mg/L]となっている.浮上沈降有り無し の比較では、粘土は立ち上がり・減水時は同程度の値を 示している.シルトについては浮上沈降有りの方が、立 ち上がり時間が早くより観測値に近くなっているものの、 減水時のかい離が大きい.また、洪水時において細砂(粒 径 0.250mm), 中砂 0.0850 (粒径 0.850mm), 粗砂 (粒径 2.000mm)について観測されているが,計算ではゼロとなり計算され得なかった.

次に,SS 負荷量[kg/s]の時間的変化と,計算結果を図 -8 に示す.この結果から沙流川大橋での洪水期間の通過 SS 負荷量[t]について求めると,観測・推定値128万tと なり,高水敷浮上沈降有りの計算では150万t,浮上沈 降無しの計算では142万tとなり,オーダー的には,ほ ぼ等しくなっている.

図-5,8 において計算条件の違いによる比較すると,高 水敷浮遊砂浮上沈降を考慮した場合の方が無しの場合に 比べ,時間的には早く現れ,量的には高い値となった. これは,浮上沈降を考慮することにより高水敷浮遊砂が 沈降量より浮上量の方が大きくなり浮上し,そのため流 水中に多く存在していることを示している.

今回洪水前後において、沙流川大橋(KP2.8)と約 13.2km 上流の荷菜大橋(KP16.0)で高水敷の河床材料調査を行っ ている.この現地調査データと今回の高水敷浮遊砂浮上 沈降有りでの計算結果を図-8,9 に示す.調査結果から下 流に位置する沙流川大橋では粒径構成がほとんど変わら ないのに対し,上流に位置する荷菜大橋では洪水後細か い粒径が多く存在している.計算結果では,全体的に調 査値よりも堆砂する傾向にあるが傾向はつかめている. これは,(11)式において洗掘を受けた場合初期の粒径分 布を与えているが,初期の粒径分布は洪水前高水敷での 沙流川大橋(表層 5cm)・荷菜大橋(表層 3cm)での平均値を 与えている.表層は細かい粒径が多く,そのため洗掘を 受けると細かい粒径を多く供給することになる.このた め,計算結果においても細かい粒径が多く存在する事と なった.

図-9 沙流川大橋の高水敷粒径加積曲線図

図-10 荷菜大橋の高水敷粒径加積曲線図

4.終わりに

沙流川における洪水の諸元を与え高水敷における浮上 沈降を考慮した場合の計算を行った.その結果,洪水上 昇期の濃度の立ち上がりが早まり,より観測結果に近い 値となったが,洪水ピーク後高い濃度が維持される現象 は再現できなかった.今後,高水敷における粒径分布を 含め,モデルの改良を行う必要がある.

謝辞

本研究は,国土交通省北海道開発局の受託業務による 補助を受けた.記して謝意を表す.

<参考文献 >

- 1)佐藤耕治・渡邊康玄:洪水時における微細砂の縦断方 向輸送,土木学会水工学論文集第45巻,pp.673-678, 2001.
- 2)渡邊康玄・新目竜一・斉藤大作・玉川尊:鵡川 1998
 年融雪出水時の物質輸送に関する調査,土木学会水工 学論文集第43巻,pp.587-592,1999.
- 3)小川長宏・渡邊康玄:沙流川流域における 2003 年 8 月洪水の調査観測,土木学会水工学論文集第 48 巻, PP.955-960,2004.
- 4)小川長宏・渡邊康玄:二風谷ダムでの 2003 年台風 10
 号における SS の挙動,土木学会河川技術論文集,第
 10 巻,pp.525-530,2004.
- 5) 芦田和男,道上正規:混合砂礫の流砂量と河床変動に 関する研究,京都大学防災研究所年報第14号B,1971.
- 6)浅田宏:山地河川の流砂量と貯水池の堆積過程に関する研究,電力中央研究所報告総合報告No.2,1976.
- 7)岩垣雄一:限界掃流力の流体力学研究,土木学会論文 集第41号,1956.
- 8)Itakura, T. and T. Kishi : Open Channel Flow with Suspended Sediments, Jour. Hyd. Div., Proc. ASCE, Vol. 106, No. HY8, 1980.