RBF による設計許容空間の近似と耐震設計への応用について

Approximation of design allowable space by RBF and its application to structural seismic design

北海学園大学工学部土木工学科正 員 杉本博之(Hiroyuki Sugimoto)北海学園大学大学院学生員 阿部淳一(Junichi Abe)香川大学工学部信頼性情報システム工学科正 員 荒川雅生(Masao Arakawa)北武コンサルタント(株)正 員 渡邊忠朋(Tadatomo Watanabe)

1. まえがき

現在,橋梁の耐震性能の照査は,時刻歴応答解析によ る照査を基本としている.この時刻歴応答解析は,解析 に多大な時間を必要とし繰り返し計算が必要な設計には 時刻歴応答解析を直接組み込むことは,実用的ではない そのためには,何らかの方法で,動的応答を近似させる 必要がある.

1 次の振動モードが卓越するような構造物に関して は,非線形スペクトル法における近似が使用されている ¹⁾.だが,高次モードが卓越するような構造物,または 免震構造物等の場合,その応答は複雑となり,非線形ス ペクトル法による応答値の推定は困難になると考えられ る.そこで本研究では,Radius Basis Function(以下, RBF)を用いて構造物の動的応答を推定し,最適耐震設 計を行うことを考えた.

構造最適耐震設計における RBF を応用した例は少な く, RBF のパラメータ等の検討も不十分ではないかと 考えられる.

そこで本論文では,構造最適耐震設計に RBF を用い るための基礎的研究とし,簡単な2変数の構造最適設計 を用いることにより RBF のパラメータの検討を行う. そしてこの結果を,最適耐震設計に応用を行った.

2. RBF

2.1 RBF の概要 RBF は放射基底関数のことをいい, その代表的なものとして次式のガウス関数があげられる.

$$h(x) = \exp(-||x-c||^2/r^2)$$
 ... (1)

ここで,xは入力する変数,h(x)はxに対する基底関数 の出力値, はノルムを示している.cは基底関数の 中心位置,rは基底関数の半径である.RBFによる応 答曲面は,複数の基底関数に重みを乗じて重ね合わせる ことにより形成される.つまり,基底関数の数を m 個 とすると,次式のように表現される.

 $O(\mathbf{x}) = \sum_{j=1}^{m} w_j h_j(\mathbf{x}) \qquad \cdots \qquad (2)$

ここで, O(x)は関数の出力値, wj は基底関数に対する重 み係数である.また,この重みは次式を最小にすること で決定される.

 $E = \sum_{i=1}^{p} (y_i - O(x_i))^2 + \sum_{j=1}^{m} \lambda_j w_j^2 \quad \cdots \quad (3)$ ここで, y_i は教師値, j は w_j の制御パラメータである. 最適な重みは,式(3)を偏微分することにより得られ,

結果のみを示すと以下のようになる. $W = (H^T H + \Lambda)^{-1} H^T y$ $\cdots (4)$ ここで, y_1 λ, 0 $h_1(x_1) \cdots h_m(x_n)$ y_2 ۰. . ÷ ÷ **y** = H = ÷ $0 \cdots$ λ_i $h_1(x_n) \cdots h_m(x_n)$ y_i となる.2)

2.2 r と の関係 RBF の学習において,パラメータは w, ,r となる.w は式(4)により算定され,r は最適化 によって求める.結果,入力パラメータは となる.こ の の値は,最適化される半径の値に影響を与える.

半径の最適化は,出力値と教師値の2乗誤差の最小化 とし,各基底関数及び各設計変数の半径を最適化する. つまり以下の式となる.

$$OBJ = \sum_{i=1}^{p} (y_i - O(x_i))^{i} \rightarrow \min \qquad \cdots \qquad (5)$$

図 - 1 に 1 変数を例とした, r と の関係の概念図を示す. の値が比較的大きい場合,式(3)は第2項の値が大き くなり,応答曲面の出力値は教師値と大きく異なる(図 -1(a)).そこで,各基底関数が互いに重なり合い,目的関 数の値を小さくしなければならない.結果,半径は比較 的大きく最適化され(図 - 1(b)),大域的な近似が可能とな る.一方,の値が比較的小さい場合,基底関数は,式 (3)の第2項の値が小さく,基底関数単独では,目的関 数の値は小さい.だが各基底関数を重ね合わせると,目 的関数の値は大きくなる(図 - 1(c)).従って,各基底関数 が重なり合わないように,半径は小さくなる傾向(図 -1(d))となる.このような傾向を把握し,対象とする構造 最適設計問題に適切なの入力が必用とされる.

3. RBF を用いた構造最適設計

ここでは、RBF の基礎的研究とし、パラメータの検 討について説明する.対象とする構造を図 - 2^{3} に示す. 図中の A_iはi部材の断面積, q_iはi部材の分布荷重, P は集中荷重, 1_iはi部材のスパン長である.設計変数 は A₁, A₂の2変数とした.目的関数は、構造全体の総 容積とし、制約条件は、各部材の最大応力が許容応力以 下とする.設計条件は q₁=q₂=1.0、P=0.0、I₁=120、 I₂=100を case1 とし、q₁=q₂=0.1、P=1.0、I₁=100、I₂=300 を case2 とし、2case で検討した.最適化手法は遺伝的 アルゴリズム(以下、GA⁴)</sup>)を用いた.以下に目的関数 式、制約条件式を示す.

$F = \sum_{i=1}^{n} A_i l_i$	•	•	•	•	•	(6)
<i>i</i> =1						

 $g_i = |\sigma_{i_{\text{max}}}| - 20 \le 0$ (*i*=1~2) ・・・・(7) ここで,F は目的関数, g_i はi部材の制約条件, $_{\text{imax}}$ は, i 部材の最大応力である.半径の最適化は,ADS⁵⁾を用 いた.最適化手法は,BFGSの可変計量法とした.

3.1 応答曲面の作成 本研究は, GA で扱われる制約条件の近似を試みる.だが複数の制約条件を持つ設計問題の場合,その数だけ曲面を作成しなければならず,効率的ではない.最適化計算における制約条件は,1つでも満足しなければ,その設計は非許容解となる.つまり,全ての制約条件での最大値(以下,gmax)を照査することによって,その設計が満足しているか否かは判定を行うことができる.そこで本研究では,gmax を教師データとして応答曲面を作成し,GA に与えるものとする.つまり,教師データは以下の式となる.

y = max(g_i) (i=1~2) ・・・・・(8) 3.2 の検討 2 節に示した様に, の値は重みを抑制 する項であり,g_{max}の近似に適切な を設定しなければ ならない.そこで本研究では,同じ学習データを用いて =0.01,0.1,1.0,10.0 で曲面を作成し,検討する.学 習データ数を10点とし,半径の最適化は,初期半径5.0, 最小半径0.001,最大半径1000とし,最適化を行ってい る.図-3 に全ての設計点に対して解析を行い,g_{max}を 高さ方向にプロットした等高線図を示す.つまり,図-3 の等高線図を RBF で近似を行うことになる.また,

図-4にの値別に作成された応答曲面を示す.

case1 で各応答曲面を比較すると, =0.01 及び 0.1 の 場合, g_{max} の値が比較的高い場所で,基底関数が独立す るように存在していることが確認できる.実曲面に比べ, 起伏が激しい応答曲面となった.の値が重みに比べ小 さすぎると考えられる.一方 =10.0 では,許容領域が 存在しなく,GA は解を出すことが不可能となる.この 場合,の値が大きすぎると考えられる. =1.0 の場 合,曲面の形を比較的精度良く近似している.case2 で 比較検討を行っても,case1 と同様, =1.0 で比較的精 度良く近似できていることが確認できる. g_{max} の近似を 行う場合, =1.0 程度で重みを適度に抑制できること が考えられる.

3.3 半径の最適化 半径の最適化における設計変数は, 学習データ数に比例し増加する.設計変数が増えれば, 最適化の負担は多くなる.そこで次に,学習データの増 加による,最適化される半径への影響について検討する.

図 - 5 に学習データを 10 点から 2 点ずつ追加し,計 20 点まで学習データを追加した場合の応答曲面を示す. 設計条件は case1 とした.ここでは,許容領域の近似の 精度を確認するため,2 次元で曲面を表した.図中の薄 い黒が許容領域,それ以外が非許容領域となる.また, 図中の太線は,真の許容,非許容の境界線となる.

学習データ 10 点を基準に比較検討をする.学習デー タ 14 点までは,データを追加することにより,許容領

域が真の境界線に近付いていくことが確認できる.だが, 学習データ数 14 点以降は,データが追加されているの に関わらず,曲面が改善されていない.そこで,比較的 精度良く近似できた学習データ 14 点と,20 点の最適化 された半径について検討を試みた.各応答曲面の半径を 確認すると、学習データ 14 点の場合最小半径は約 3 で あるが、20 点の場合約 0.001 となった.RBF における 応答曲面は,各基底関数が重なり合い近似を行うもので あり,最適化される半径の値が 0.001 となると,基底関 数は重なり合うことができない.曲面の改善が得られな い要因として,このような半径の極小化が考えられる.

上記に示した半径の極小化を抑えるため,半径の下限 値を制約することを考える.図-6 に最小半径を 0.1, 1.0,5.0,10.0 と制約し,最適化した場合の応答曲面を 示す.用いたデータは,図-5 のデータ数 20 点のもの とし,この応答曲面を基準に比較検討をする.図を比較 すると,最小半径 0.1 及び 1.0 の場合には大きな違いは 表れないが,5.0 とした場合,精度良く近似できている ことが確認できる.10 とした場合は精度が下がってい る.このように,ある程度半径の下限値を制約すること により,曲面の精度が向上している.だが半径の値は, その基底関数が,設計空間に影響を及ぼす範囲である. よって,設計空間が変われば半径の下限値を再度検討し なければならず,一般的ではない.

そこで次に,各基底関数間の最小距離を半径に応用す ることを考える.ADS に用いる半径の初期値を,各基 底関数間の最小距離とし,最適化を行ってみた.作成さ れた応答曲面を図-7 に示す.真の境界を,精度良く近 似できていることが確認できる.各基底関数間の距離を 利用することにより,設計空間に影響されない,一般的 な近似が可能となった.

4. 最適耐震設計への応用

これまでの検討結果を基に,最適耐震設計への応用を 試みる.対象とする構造物は,道路橋1層門型 RC ラー メン橋脚とし,柱部材の最適化を行う.これを図-8 に 示す.また,柱部材は非線形領域を考慮し,それ以外の 部材は全て弾性とした.部材の骨格曲線は,道路橋示方

図 - 7 初期値変更の応答曲面

書・同解説[®]より,バイリニア型の,曲げモーメント M - 部材角 関係として与える.

4.1 最適耐震設計問題の定式化 目的関数はコンクリ ート及び鉄筋のトータルコストとする.以下に目的関数 式を示す.

 $OBJ = \alpha_c \cdot V_c \cdot K_c + \alpha_s \cdot V_s \cdot K_s \cdot G_s$ (9) ここで, $V_c(m^3)$ はコンクリート量, $V_s(m^3)$ は鉄筋量, c はコンクリートの単価補正係数, s は鉄筋の単価補正 係数で共に 1.0 とした. K_c はコンクリート単位容積当た りのコスト(=65.1unit/m³), K_s は鉄筋単位重量当たりの コスト(=9.1 unit/kN), G_s は鉄筋の単位重量(=77kN/m³)で ある.制約条件は,耐震性能に対する条件,及びせん断 破壊に対する条件とする.耐震性能に対する条件は, 種々のコンクリート構造物に対応させるため,非線形を 考慮する部材の部材角を照査する. これを,タイプ 及 びタイプ 地震動に対して,橋軸方向及び橋軸直角方向 で照査する.制約条件式を以下に示す.

$$g(i) = \frac{\theta_{dij}}{\theta_{rdij}} - 1 \le 0 \quad (i = 1 \sim M, j = 1 \sim 2) \quad \cdot \quad \cdot \quad \cdot \quad (10)$$

$$g(i) = \frac{V_{di}}{V_{di}} - 1 \le 0 \quad (i = 1 \sim M) \quad \cdot \quad \cdot \quad \cdot \quad (11)$$

$$\frac{1}{V_{rdi}} - 1 \le 0 \quad (l = 1 - M)$$

ここで,M は部材数, _{dij}は部材 i の部材端部 j に対す る応答部材角, _{rdi} は部材 i の部材端部 j に対する許容 部材角,V_{di} は部材 i の設計せん断力,V_{rdi} は部材 i のせ ん断耐力である.RBF による応答曲面は,式(8)の最大 値を教師値とし,近似を行う.

4.2 最適耐震設計システム 本研究では,数回の時刻 歴応答解析を基に,応答曲面を作成し,最適化を行うものである.だが,時刻歴応答解析プログラム,応答曲面 作成プログラム,GA プログラムは単独で実行形式を持

つため,これら全てがリンクする最適設計システムを用 いる.この設計システムを図-9 に示す.システムの流 れを以下に示す.まず,設計の母集団をランダムに発生 させる.この母集団の中から,初期学習データとして数 点,設計空間内で疎なものから選択する.選択された学 習データに対し時刻歴応答解析を行い,制約条件を求め, 応答曲面を作成する.作成された応答曲面を用いて GA が最適化を行い,設計解が得られるという流れである.

また,この最適耐震設計システムでは,曲面を数回 更新することによって,さらなる最適解の探索を行うシ ステムとした.曲面を更新するには,学習データの追加 が必要となる.本研究では,GA で得られた設計解と, 設計空間内で疎な点を1点選ぶ.この2点に対し解析を 行い,初期学習データに加えて再度応答曲面を作成する. GA の解を追加することにより,局所的な精度を向上さ せ,疎な点を追加することにより,大域的な精度を向上 させる意味を持つ.また,これら一連の流れは全て自動 で行われる.

4.3 設計変数 本研究は,正方形断面を対象とした. 設計変数は,断面高さ B,軸方向鉄筋本数 N,せん断補 強鉄筋径 D_w, せん断補強鉄筋組数 N_w, せん断補強鉄筋 配置間隔 Sv とした.また,コンクリート強度は 27N/mm²,軸方向鉄筋径は 32mm,軸方向鉄筋強度は 345N/mm²とした.各設計変数の候補値を表-1 に示す. 4.4 計算結果 図 - 10 に応答曲面更新回数と目的関数 の推移を示す.図中の は,GA の最適解が時刻歴応答 解析で許容解となった場合, が非許容解となった場合 である.目的関数が最小となったのは,応答曲面の更新 回数 10 回で,目的関数は 500.2651unit となった.得ら れた最適設計の制約条件は, せん断破壊の最大値で -0.52, 耐震性能の最大値で - 0.01 となり, 耐震性能に対 してアクティブな設計となった.応答曲面は,真の境界 付近を精度良く近似できたと考えられる.この得られた 最適設計の妥当性を確認するため,非線形スペクトル法 との比較を試みる.表-2 に RBF 及び非線形スペクト ル法で得られた最適設計の,目的関数と断面諸元を示す. 非線形スペクトル法に比べ,目的関数は約2割減少した. 断面諸元は非線形スペクトル法に比べ,断面幅及び軸方 向鉄筋本数が少なく, せん断補強鉄筋径が大きくなった. また,非線形スペクトル法で得られた最適設計を RBF で解析を行うと,許容解となったが,RBF により得ら れた最適設計を非線形スペクトル法で解析を行うと,非 許容解となった.これら2つの設計は時刻歴応答解析の 照査を満足していることから, RBF の有効性が検討で きたと考えられる.

5. あとがき

構造最適設計に RBF を用いるため,簡単な構造最適設 計を例に,パラメータの検討を行った.の検討では, 1.0 を用いることにより,大域的な近似が可能となった. 半径の検討では,初期値に各基底関数間の最小距離を用 いることによって,精度の高い近似が可能となった. RBF のパラメータを決定し,最適耐震設計に応用を行 ったところ,非線形スペクトル法に比べ,目的関数を減 少することができ、RBFの有効性が検討できた.

参考文献

1) 杉本・齋藤・渡邊: RC ラーメン高架橋の耐震補強最適 化に関する研究,構造工学論文集 Vol.46A,2000.

2) 杉本・名畑・荒川・古川・渡邊:道路橋耐震設計の ための統合化システムについて,土木学会北海道支部論 文報告集 第60号,2004.

3)山田・大久保監訳:最適構造設計,丸善株式会社,1981.
4) 杉本・鹿:工業最適設計のための汎用 GA プログラムについて,北海学園大学学園論集 第96・97 号,1998.

5) Vanderplaats, G.N. and Sugimoto, H. : A General Purpose Optimization Program for Engineering Design , Computer & Structure Vol.24 No1, 1986.

 6) 日本道路協会:道路橋示方書・同解説 耐震設計偏, 丸善株式会社,2002.