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1. Introduction 

Cylindrical shells as structural components are used in 
many engineering fields in the form of storage tanks, water 
ducts, storage, vessels, pipelines, and many others. They are 
used because of their strength and effectiveness. This paper 
examines the interactive behavior between shell, foundation, 
and internal liquid. 

Lakis et al.[1-2] have developed the hybrid finite 
element formulation for circular cylindrical shells based on 
the analytical shape functions which are derived from 
governing equation of shell. The analysis of whole buried 
pipeline subjected to sinusoidal seismic wave, differential 
settlement, and dislocation of ground has been investigated 
by Yang et al.[3] using the shell finite element. Paliwal et 
al.[4-5] have studied the free vibrations of the whole buried 
cylindrical shells in Winkler and Pasternak foundations by 
direct solution to the governing equations of motion. In the 
paper, the elastic foundations are distributed uniformly both 
in the circumferential and in the longitudinal directions. 
However, cylindrical shells are generally laid on elastic 
foundation, so that the foundation only covers certain parts of 
the shell in the circumferential direction. This leads to more 
complex problem. Amabili et al.[6] have investigated the free 
vibrations of cylindrical shell simply supported at both ends 
with a non-uniform elastic foundation in the circumferential 
direction based on the Rayleigh-Ritz method. The elastic 
foundation has to be assumed distributed uniformly over the 
whole cylinder length in the longitudinal direction. Gunawan 
et al.[7-8] have studied the static and free vibration of 
cylindrical shells partially buried in the elastic foundation 
based on the semi-analytical finite element method where the 
simple polynomials were used as shape function in the 
longitudinal direction. 

This paper presents the dynamic characteristics (i.e. 
natural frequencies and mode shapes) of fluid-filled 
cylindrical shells on elastic foundation by means on the semi-
analytical finite element method where shape functions based 
on the governing equations of shell are used in the analysis. 
The shell is discretized into cylindrical finite elements. Soil 
as a foundation is represented by four parameter elastic 
springs and may be distributed by a Fourier series and an 
element mesh strategy in the circumferential and in the 
longitudinal directions, respectively. The internal fluid is 
described by the potential flow. Hydrodynamic pressure 
acting on the shell is derived from the condition for dynamic 

coupling of the fluid-structure. The influence of internal 
fluid, shell geometries, and foundation parameters (i.e. spring 
stiffness and enclosed angle) on the natural frequency of the 
vibrating system is presented systematically for both 
symmetrical and asymmetrical vibrations. 
 
2. Model and formulation 

The structure is an isotropic thin elastic cylindrical shell 
with Young’s modulus E, Poisson’s ratio υ, radius of the 
middle surface R, thickness h, and length L. The foundation 
is represented by continuous elastic (axial, circumferential, 
radial, and rotational) springs and distributed on a limited arc. 
The axial, circumferential, radial, and rotational spring 
coefficients are denoted by Ku, Kv, Kw, and Kβ, respectively. 
In the analysis, all the spring coefficients are assumed to be 
constant along the enclosed arc. The angles that define the 
enclosed arc are denoted by φ1 and φ2. The geometry and 
generalized model of the structure are shown in Fig.1. 
 
 
 
 
 
 
 
 
 

(a) Geometry 
 
 
 
 
 
 
 
 
 
 

(b) Generalized model 
Fig.1. Cylindrical shell on elastic foundation. 

 
The displacement of a point on the middle surface in the 

axial, circumferential, and radial directions is indicated by u, 
v, and w, respectively. The displacement functions which 
include the symmetrical (superscript S) and asymmetrical 
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(superscript U) deformations with respect to the the θ = 0 
axis are given by 

 
 
 

(1) 
 
 
 
where m is a typical circumferential wave number. For the 
sake of brevity, formulation is explained only for a 
symmetrical system since formulation for the asymmetrical 
system is completely analogous to that of the symmetrical 
one. The shape functions in the longitudinal direction are 
assumed [10] to be in the form of: 
 

 
(2) 

 
 
where S

mA , S
mB , and S

mC  are constants for a typical 
circumferential wave, m. mµ  is the characteristic value 
which can be found by substituting Eq.(2) into the following 
Sanders equations of thin cylindrical shells: 
 

(3) 
 
where Li (i = 1, 2, 3) are the differential operators of the shell 
equation (without the foundation) with respect to x and θ. 
Details of the operators may be found in Ref.[2]. On the 
substitution of Eq.(2) into Eq.(3), three linear simultaneous 
equations in S

mA , S
mB , and S

mC  can be obtained. For a non-
trivial solution, determinant of the coefficient matrix has to 
be zero. After simplifications, for m ≠ 0, the bi-fourth 
polynomial can be obtained and given below: 
 

(4) 
 
where ami (i = 1, 2, 3, 4) are the coefficients of the 
polynomial. Solution of Eq.(4) leads to eight complex 
characteristic roots mjµ (j = 1, 2, 3, … 8). As the 
constants S

mA , S
mB , and S

mC  are not independent, the complete 
set of the shape functions in the longitudinal direction can be 
rewritten as follows: 
 
 

 
(5) 

 
 
 
where S

mjα  and S
mjγ  are constants which can be determined 

by back substitution into Eq.(3). It is worthwhile to mention 
that the asymmetrical system leads to the identical 

characteristic polynomial as for the symmetrical system 
(Eq.(4)) so that S U

mj mj mjµ µ µ= = , S U
mj mjα α= , but S U

mj mjγ γ= − . 
For m = 0, the system is separated into torsional and non-
torsional systems [2]. 

Discretization is done in the usual way as in the finite 
element method. The following nodal displacement 
parameters at the element boundaries are used: 
 

(6) 
 
where rotation angle β is defined as the first derivative of w 
with respect to x. 

The stiffness and mass matrices of a shell element are 
given by [7] 

 
(7) 

 
and, 
 

(8) 
 
where ρS is mass per unit volume of the shell. The integration 
in thickness direction has already been carried out in Eq.(7). 

The stiffness matrix of foundation for an element is 
given by  
 

(9) 
 
where  
 

(10) 
 
Note that, m and n systems in Eq.(12) are coupled due to 
partial distribution of the foundation in the circumferential 
direction. Full explanation on the details of derivation for 
stiffness and mass matrices can be found in the paper by 
Gunawan [7]. 

The fluid is assumed to be incompressible, invicid, and 
the fluid motion is irrotational so that the flow can be 
described by a velocity potential, Φ, which satisfies the 
following Laplace equation: 
 

(11) 
 

The hydrodynamic pressure, p, acting on the wall of the 
shell can be determined from the linearized Bernoulli 
equation and is given by 
  

(12) 
 
where Ri = R – h/2 is inner radius of the shell and ρL is 
density of the fluid. The motion of the shell and fluid is fully 
coupled by the radial velocities on the interface between shell 
and fluid so that 
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(13) 

 
The velocity potential function is can be written as 

follows: 
 

(14) 
 
where S S S( ) ( , , )mj mj mjR r S x tΦ θ=  and U U U( ) ( , , )mj mj mjR r S x tΦ θ= . 

By using Eq.(13) and Eq.(14), the following equation 
can be obtained: 
 

(15) 
 
 
where similar expression still holds for U

mjΦ . Henceforth, 
derivation of the fluid equation will be explained only for a 
symmetrical system since the expressions for the 
asymmetrical system can be obtained analogously. By the 
substitution of Eq.(15) into Eq.(11) and considering the shell 
and fluid are in motion, the following equation can be 
obtained: 
 

(16) 
 
where S S

mj mj Rλ µ= . By consideration to the flow condition, 
the solution of Eq.(16) can be expressed as 
 

(17) 
 
where S( )m mjJ rλ  and S

mjD  are the m-th  modified Bessel 
function of the first kind and constant, respectively. The 
velocity potential function can be obtained by substituting 
Eq.(17) into Eq.(15) and is rewritten as 
 

(18) 
 
 
The hydrodynamic pressure expression can be obtained by 
substituting Eq.(18) into Eq.(12) and is given by 
 

(19) 
 
where  
 

(20) 
 
 
note that S U

mj mj mjλ λ λ= = . By taking Eq.(19) as an external 
load, the energy expression can be established, and by using 
the finite element method, the mass matrix of fluid can be 
obtained and written as 
 

(21) 

where wN  and Ai are total shape function of the radial 
displacement and internal surface of the shell, respectively. 
Eq.(20) has been incorporated in *

wN  for each 
circumferential wave number. 

In the analysis, an approximate solution is obtained by 
truncating the series of wave number m to a finite number of 
waves, M. From Eqs.(7), (8), (9), and (21), the global 
equation of the problem can be written as 
 

(22) 
 
where S, S, F, L, , and ω are the global stiffness and 
mass matrices of the shell, the global stiffness matrix of the 
foundation, the global mass matrix of the fluid, the total 
nodal displacement vector, and the natural frequency of the 
vibrating system, respectively. For convenience, the non-
dimensional frequency parameter 2

S(1 )L EΩ ω ρ υ= −  is 
used through out this paper. 
  
3. Numerical results 

From convergence studies which are not shown here, 
total number of elements (NS) is equal to 20 and M is equal 
to 20 are used to obtained sufficient accuracy of the results. 

For an example, a shell simply supported at both ends 
with the following parameters: υ = 0.30, Ku = Kv = Kβ = 0, Kw 
= 0.003, φ1 = φ2 = φ = π/3, and ρL/ρS = 0.128 are analyzed. 
Variations in Ω with R/L for different values of R/h are 
shown in Fig.2. The results for empty shells are also plotted 
in the figure. As R/L increases, Ω fluctuates. These 
fluctuations are caused by the changes in most dominant 
waves. However, the fluctuations diminish as R/h increases. 
The existence of internal fluid lowered down the natural 
frequencies, however the curves for certain values of R/h are 
similar. 

More results will be explained in detail during the 
presentation. 
 
4. Conclusions 

Free vibration analysis of cylindrical shells filled with 
fluid and partially buried on elastic foundations by using the 
semi-analytical finite element method are presented. The 
analytical shape functions used in the longitudinal direction 
are derived from the governing equations of the empty shell 
without the foundation terms. The present formulation is still 
applicable and gives significant improvements in the 
convergence behavior when compared with the usual simple 
polynomials based formulation. Distribution of the 
foundation in the circumferential and in the longitudinal 
directions may be handled by the Fourier series and an 
element mesh strategy, respectively. The fluid in the 
sectional plane is treated analytically without discretization 
into finite elements. The present method is suitable for the 
problem considered due to its generality, simplicity, and 
further development possibilities. 
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                 (a) First symmetrical mode (b) Second symmetrical mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               (c) First asymmetrical mode (d) Second asymmetrical mode 
 

Fig.2. Variations in Ω with R/L for different values of R/h  
(SS, υ = 0.30, KwL/E = 0.003, φ = π/3, and ρL/ρS = 0.128). 
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