地震危険度評価のための北海道のサイト増幅特性

Site amplification effects of Hokkaido for seismic hazard assessment

飛島建設(株)技術研究所	○正員	三輪 滋(Shigeru Miwa)
飛島建設(株)技術研究所	正員	池田隆明(Takaaki Ikeda)
(独)北海道開発土木研究所	正員	佐藤 京(Takashi Sato)
(独)北海道開発土木研究所	正員	石川博之(Hiroyuki Ishikawa)
(独)北海道開発土木研究所	正員	岡田慎哉(Shinya Okada)

1. はじめに

地震による地表の揺れはその地点の地盤特性により大 きく影響を受けることから,表層地盤の増幅特性の評価 は,震源の評価と同程度に重要な課題である.そのため, 特定の地点の地震動を評価する場合には,その地点での 地盤調査結果や物理探査結果から地盤構造を推定し,基 盤からの地震動の増幅特性を把握する必要がある.一方, 地域における地震危険度評価やそれに基づく地震防災計 画の策定等では,広域にわたる地震動評価が必要とされ るため,特定の地点での地震動評価のように個別に詳細 な調査を行うことが実務的には困難を伴う場合も多い. このような場合,増幅特性を簡単な指標から所定の精度 を有して評価する方法が必要である.

本検討では、松岡・翠川¹⁾による国土数値情報の地形 分類から、表層地盤の増幅特性を評価する方法を取り上 げ、北海道に対する適用性を検討した.具体的には、こ の手法を用いて釧路地域の地盤情報から増幅特性を評価 し、同地域で観測された1994年北海道東方沖地震(Mj8.2) の地震動記録から得られる増幅特性との比較を行った.

2. 地震動記録を用いた増幅特性の評価

2.1 検討対象地点

(財)震災予防協会の ESG 研究委員会²⁾では,表層地盤 構造が地震動におよぼす影響を定量的に評価することを 目的に 1993 年 8 月より釧路市内で強震観測を実施し, 1994 年北海道東方沖地震では 14 地点における地震動記 録が観測されている.これ以外にも,港湾地域強震観測 網の釧路港観測点(PHRI)³⁾,(独)建築研究所(当時,建設省 建築研究所:BRI)⁴⁾,気象庁(JMA)⁵⁾の観測点でも地震動 記録が観測されている

図-1,表-1に地震動が観測された地点および、釧路市 内の表層地質を示す^の.釧路市内の東側、旧釧路川より も東側は更新統の台地がある.それよりも西側はピート や砂層などの比較的軟弱な完新統の層が堆積しているこ とがわかる.完新統の層厚は、最も厚いところで約 80m である.地震観測点はこの台地と堆積層の上に分布して おり、TEP、KKP、JMA、BRI、HEU、TQH、SSKの地点 が台地上、KOS、TBS、TTR、PHRI、JSI、KMB、TIS、 SMZ、KCH、ASHの地点が堆積層上と考えられる.PHRI では、地表の観測記録と同時にGL.-77.45mでの記録もあ わせて観測されている.地表をPHRI-S、地中をPHRI-B とする.PHRI 地点の地盤調査結果から、PHRI-B の地震 計は堆積層の最下層の砂層,もしくは更新統の釧路層に 設置されていると考えられる.

図-1 釧路市内の表層地質分類と地震観測地点

	加	速度	速度			
地占	最大値	最大値の比	最大値	最大値の比		
-0.1	(cm/s²)	(/PHRI-B)	(cm/s²)	(/PHRI-B)		
	NOOOE NO90E	NOOOE NO90E	N000E N090E	N000E N090E		
ASH	250.7 320.1	2.487 3.057	15.79 20.55	2.179 2.645		
JSI	227.8 176.9	2.260 1.690	20.01 16.78	2.762 2.148		
KCH	151.7 167.0	1.505 1.623	14.26 15.87	1.968 2.043		
KMB	152.5 176.3	1.512 1.684	14.83 17.45	2.046 2.246		
KOS	126.4 140.1	1.254 1.338	18.56 18.75	2.562 2.414		
SMZ	255.7 261.1	2. 537 2. 493	20.12 19.23	2.776 2.475		
TBS	160.1 177.1	1.588 1.691	19.52 15.98	2.694 2.057		
TIS	165.3 125.1	1.639 1.195	20.29 12.91	2.801 1.661		
TTR	131.7 127.7	1.306 1.220	14.48 13.47	1.999 1.734		
PHR1-S	196.6 268.5	1.951 2.564	20.02 20.51	2.763 2.640		
HEU	374.0 368.0	3.710 3.514	18.49 19.82	2.552 2.552		
KKP	138.5 153.9	1.374 1.470	15.95 17.40	2.202 2.240		
SSK	148.6 172.7	1.474 1.649	14.57 10.42	2.011 1.342		
TEP	217.9 277.6	2.161 2.651	17.78 17.88	2.454 2.302		
TQH	154.8 142.3	1.536 1.359	16.08 12.96	2.220 1.668		
BRI	354.9 341.5	3. 521 3. 261	22.40 21.07	3.091 2.713		
JMA	454.8 473.3	4. 512 4. 520	28.58 29.01	3.944 3.734		
PHR I – B	100.8 104.7	1.000 1.000	7.25 7.77	1.000 1.000		

表-1 観測記録の最大値と基盤に対する地表の最大値の比

2.2 観測記録と基盤に対する最大値の比

今回対象とした 17 地点での観測事象は,TIS サイトが 速度,それ以外が加速度である.また,観測方位(地震 計の設置方位)は統一されていない.そこで,各時刻歴 波形に対して全時間帯の平均値を基線ずれ量とした基線 補正を行った後,方位変換により N000E, N090Eの地震 動に補正した.加速度時刻歴に対しては,基線補正した 地震動に対し 0.12Hz~10Hz が有効なバンドパスフィル ターを作用させた後,フーリエ積分により速度時刻歴を 算出した.表-1 に最大加速度,最大速度を示す.また, PHRI-B を基盤での観測点と見なし,地表での最大値を PHRI-B の最大値で除した最大値の比を示す.図-2にTBS, BRI, PHRI-B における速度時刻歴を示す.

図-2 1994年北海道東方沖地震での時刻歴波形(速度)

3. 松岡・翠川の方法に基づく増幅特性の評価

3.1 評価方法

松岡・翠川は表層地盤の増幅特性として,最大速度の 増幅特性を国土数値情報に基づく微地形分類から推定す る方法を提案している.

この方法では、まず微地形分類と標高(H:m)、河川からの距離(D:km)に基づき(1)式から表層30mの平均S波速度(AVS:m/s)を推定する.

 $logAVS = a + blogH + clogD \pm \sigma \tag{1}$

a,b,cは微地形毎に与えられる回帰係数(**表-2**), σは標準 偏差である.

表-2 微地形分類から AVS を算出するための回帰係数

微地形分類	а	b	С	σ
①埋立地	2.23	0	0	0.14
②造成地	2.26	0	0	0.09
③三角州・後背湿地(D≦0.5)	2.19	0	0	0.12
④三角州・後背湿地(D>0.5)	2.26	0	0.25	0.13
⑤自然堤防	1.94	0.32	0	0.13
⑥谷床	2.07	0.15	0	0.12
⑦砂州	2.29	0	0	0.13
⑧扇状地	1.83	0.36	0	0.15
⑨ローム台地	2.00	0.28	0	0.11
①砂礫台地	1.76	0.36	0	0.12
①丘陵	2.64	0	0	0.17
⑫その他	2.25	0.13	0	0.16
③先第三紀	2.87	0	0	0.23

(2)式により、AVSからVs=600m/s相当の地盤を基準とした場合の最大地動速度の増幅度(ARV)を推定する.

logARV=1.83-0.66logAVS±0.16 (2) **表**-3に設定したAVSを示す.なお,(2)式は1987年12月 17日の千葉県東方沖地震の観測記録に基づき関東地方の データを用いて構築された経験的関係式である.

3.2 国土数値情報に基づく微地形への分類

国土数値情報の地形分類は, 縮尺10~20万分の1の土地 分類図に基づいたものであり, 緯度方向に30秒, 経度方 向に45秒(約1km×1km)の地域基準メッシュごとに与えら れている. この地形分類は表-2に示す単位まで細分類さ れていないため, 河川からの距離等を用いて細分類する ⁷⁾.表-3に検討対象地点の微地形分類結果を示す.

土地分類がローム台地であるHEU, KKP, TEP, TQH は、()ローム台地に細分化する.土地分類が氾濫原性低 地である地点は三角州・後背湿地とし、河川からの距離D により()三角州・後背湿地 D \leq 0.5と()三角州・後背湿地 D>0.5に分類した.この中には旧釧路川の東側の台地に あるJMAおよびBRIのサイトも含まれ、実際とは整合しな い.また、SSKは春採湖の湖岸にあるため、()三角州・ 後背湿地に分類されるが、実際は台地上にある.

土地分類が自然堤防・砂州であるKOS, TBS, PHRIの うち, TBSとPHRIは海岸線からの距離が5km以内, 主要 河川(釧路川)からの距離が1km以内であることから, ⑤自 然堤防に分類する. TBSは実際には①埋立地である. KOS は標高が7m未満であることから砂州に分類する.

表-3に松岡・翠川の方法に従って求めた最大速度の増幅度(ARV)を示す. ARVは、AVSを算出する時と、AVSからARVを算出する時にそれぞればらつきを有するためは 9種類の値が得られる.表-3では、AVSを算出する際のばらつきのみ考慮した場合を示す.

表-3 松岡·翠川の方法に従い設定した最大速度の増幅度 (下段は,実際の地形条件に従い微地形分類を修正)

(下投ば、 天际の地形未住に従い城地形力規を修正)										
観	地形	H	D	微地		AVS (m/s)		A	RV(±0))
点	分類	(m)	(km)	形	$-\sigma$	±0	+σ	$-\sigma$	±0	+σ
ASH	21	4	0.38	3	117.5	154.9	204.2	2.91	2.42	2.02
JSI	21	3	0.26	3	117.5	154.9	204. 2	2.91	2.42	2.02
KCH	21	3	0.38	3	117.5	154.9	204.2	2.91	2.42	2.02
KMB	21	3	0.33	3	117.5	154.9	204.2	2.91	2.42	2.02
KOS	22	3	0.55	\bigcirc	144.5	195.0	263.0	2.54	2.08	1.71
SMZ	21	3	1.35	4	145.4	196.1	264.6	2.53	2.07	1.70
TBS	22	1	0.03	5	64.6	87.1	117.5	4.32	3.54	2.91
				1	123.0	169.8	234.4	2.82	2.28	1.84
TIS	21	4	0.96	3	133.5	180.1	243.0	2.67	2.19	1.80
TTR	21	4	1.16	4	140.0	188.8	254.8	2.59	2.13	1.75
PHRI	22	1	0.05	5	64.6	87.1	117.5	4.32	3.54	2.91
				1	123.0	169.8	234. 4	2.82	2. 28	1.84
HEU	33	10	0.49	9	147.9	190.5	245.5	2.50	2.11	1.79
KKP	33	5	0.10	9	121.8	156.9	202.2	2.84	2.40	2.03
SSK	21	20	0.09	3	117.5	154.9	204. 2	2.91	2.42	2. 02
				9	179.6	231.4	298.0	2.20	1.86	1.57
TEP	33	20	0.49	9	179.6	231.4	298.0	2.20	1.86	1.57
TQH	33	5	0.76	9	121.8	156.9	202.2	2.84	2.40	2. 03
BRI	21	20	0.17	3	117.5	154. 9	204. 2	2.91	2.42	2. 02
				9	179.6	231.4	298.0	2.20	1.86	1.57
JMA	21	20	0.17	3	117.5	154.9	204. 2	2.91	2.42	2. 02
				9	179.6	231.4	298.0	2.20	1.86	1.57
H:標高 D:河川からの距離										

3.3 最大速度の増幅度の算出

図-3に観測記録を用いた最大速度の増幅度と,松岡・翠 川の方法に基づく最大速度の増幅度との関係を示す.松 岡・翠川の方法では、平均(平均AVSを用いた平均ARV)と 最大、最小の範囲を示す.また、図-4には、松岡・翠川の 方法による平均ARVを観測記録の最大速度の増幅度で除 した最大速度の増幅度の比を示す.

全体的には、松岡・翠川の方法で求めた最大速度の増幅 度は観測記録よりも大きめに評価している傾向がある. これは、松岡・翠川の方法で求められる最大速度の増幅度 は、Vs=600m/s相当の基盤に対するものであるのに対して、 PHRIの基盤のS波速度はVs=337m/sであり、Vs=600m/sの 基盤に対する増幅度よりも小さいためと考えられる.

観測地点別に増幅度を検討するとTBS, PHRI, SSKの3 地点で増幅度を大きめの評価,また,大きな地震動を観 測したJMAおよびBRIでは小さめの評価となっている.

図-3 観測記録から得られた最大速度の増幅度と松岡・翠 川の方法により推定した最大速度の増幅度との比較

図-4 観測記録と松岡・翠川の方法により推定した最大速 度の比との比較

3.4 微地形分類の修正と最大速度の増幅度の算出

前述のようにTBS, PHRI, JMA, BRI, SSKの観測地点 の微地形区分は実際とは整合しない地形に分類されてい る.この5地点では、図-4に示すように推定した最大速度 の増幅度の一致度は低いため、微地形区分の設定に問題 がある可能性がある.そこで微地形区分を実際の地形と 整合するように修正し、最大速度の増幅度を再計算する. TBS は埋立地、PHRI も河口付近で埋立地と考えられる ことから①埋立地に分類する.JMA, BRI, SSK は台地上 にあるため⑨ローム台地に分類する.表-3の下段に見直 した地点の微地形分類とAVS, ARV を示す.

図-5,図-6 に観測記録を用いた最大速度の増幅度と, 松岡・翠川の方法に基づく最大速度の増幅度との関係を 示す.微地形区分を修正した 5 地点以外の結果は図-3, 図-4 と同じである.

TBS, PHRI, SSK の増幅度は改善され, 微地形区分を 実際と整合することによりその効果がみられた. 一方, JMA, BRI において松岡・翠川の方法で得られる最大速 度の増幅度はさらに小さくなり, 観測記録から得られた 増幅度との一致度は低下した. 八幡・佐々木⁸⁾は, JMA, BRI の観測点は標高差約 30m の崖地上にあるため, 観測 記録は地形の不整形の影響を顕著に受けたとしている. 松岡・翠川の方法では, 局所的な増幅特性の特徴を考慮 できないため, このような差を生じさせたと考えられる.

図-5 観測記録から得られた最大速度の増幅度と松岡・翠 川の方法により推定した最大速度の増幅度との比較 (微地形分類を修正)

図-6 観測記録と松岡・翠川の方法により推定した最大速 度の比との比較(微地形分類を修正)

4. AVS の推定精度および AVS と ARV との関係式の検討

松岡・翠川による最大速度の増幅度の算定方法は、微 地形~AVS, AVS~ARV との経験的関係式を使用してい る.そのため、ARVを適切に求めるためには、AVSの評 価が重要である.ここでは、地震観測点のうち地盤のVs が得られている PHRI の観測点を対象に、地盤調査結果 から得られたAVSと微地形区分から設定したAVSを比較 (3)

し、微地形区分から設定する AVS の精度を検証する.また、地盤調査から求められた AVS を用いて ARV を計算する.

(1) PHRI 地点の地表から 30m までの平均S 波速度

地表から 30m までの平均 S 波速度(AVS_{obs})は各層のせん断波速度(Vsi)を用いて(3)式で算出する. 表-4 に PHRI 地点での表層から 30m までの Vs を示す.

$$4VS_{obs} = \frac{30}{\sum_{i=1}^{30} 1/Vsi}$$

上式に従い地表から 30m までの平均 S 波速度を求める と AVS_{obs}=279.2m/s となる. 国土数値情報の微地形区分(自 然堤防)から求めた AVS(ばらつきの中心)は 87.1m/s, 実際 の地形条件と整合させて(埋立地)求めた AVS は 169.8m/s である. ばらつきの上限をとっても, 117.5m/s と 234.4m/s であり, 地盤調査から求められた AVS_{obs}とは 1.2 倍程度 の差がある. そのため, PHRI 観測地点においては, 国土 数値情報の微地形区分からでは AVS を適切に評価するこ とは困難である.

深度 (m)	土質	N値	Vs (m∕s)	深度 (-m)	土質	N値	Vs (m/s)
1	砂	6	146	16	砂	50	390
2	砂	4	146	17	砂	50	390
3	砂	16	146	18	砂	48	390
4	砂	15	146	19	砂	42	390
5	砂	17	146	20	砂	34	390
6	礫質土	31	355	21	砂	32	282
7	砂	42	355	22	砂	50	282
8	砂	23	355	23	砂	39	282
9	砂	27	355	24	シルト	8	282
10	砂	50	355	25	シルト	6	324
11	砂	50	355	26	砂	17	324
12	砂	46	355	27	砂	34	324
13	砂	32	355	28	砂	30	324
14	礫質土	37	390	29	砂	23	324
15	砂	36	390	30	砂	34	324

表-4 PHRI 地点の地表 30m までの S 波速度

(2) AVS と ARV との関係

図-7 に ARV と AVS との関係を示す. ARV と AVS との関係にはかなりのばらつきがあることがわかる.

図-7 Midorikawa et al.⁹⁾による ARV と AVS との関係式

AVS に AVS_{obs}を用いて ARV を求めると(回帰係数は埋 立地), ARV は 1.14, 1.64, 2.38 となる (-0.16, 0, +0.16). 観測記録から得られた最大速度の増幅度が 2.76 と 2.64 で あるため, ばらつきの上限をとっても, まだ小さめの評 価となっている. 図-7 中に PHRI 観測点における AVS_{obs} と観測記録における最大速度の増幅度との関係を☆印で示す. この関係は関係式の上限(+0.16)を超えており,関係式の適用範囲外にあることがわかる.

地盤の増幅度は、その地点の地盤構造や地盤の動的特 性、地震動の特性等に大きく影響を受ける. Midorikawa et al.の方法で AVS から得られる ARV は、多くの地点にお ける記録を統計処理した代表的な値であり、個々の地点 における AVS と ARV の関係を示したものではないこと を十分理解した上で使用すべきである.

5. まとめ

広域にわたる地震動評価を行うための表層地盤の増幅 特性の算定方法として,松岡・翠川による方法を取り上げ, 実観測記録を用いた増幅特性と比較してその適用性を検 討した.得られた結論は以下の通りである.

- ①松岡・翠川の方法で得られる増幅度は観測記録による 増幅度に対して 0.6~1.8 倍程度のばらつきの範囲で設 定された. 松岡・翠川の方法の増幅度が多くの地点で上 回ったのは、観測記録の増幅の基準となる基盤の S 波 速度が、松岡・翠川の方法で想定する基盤の S 波速度よ りも小さかったことに起因していると考えられる.
- ②国土数値情報から設定した微地形区分を実際の地形に 修正することにより、一致度は改善し、一部の観測点 を除き観測記録に対して 0.8~1.4 倍程度のばらつきの 範囲で設定することができた.微地形区分を適切に設 定することが、精度向上に重要である.
- ③地域防災計画における地震被害予測のように地震動や 被害程度を広域・面的に把握する場合には、松岡・翠川 の方法は増幅特性評価に有効な方法と考えられる。
- ④地点を限定した詳細な地震動評価や構造物の応答解析 を行うためには、0.8~1.4倍というばらつきの範囲は大 きい. 松岡・翠川の方法で得られる増幅度は多くの地点 における観測記録を統計処理した代表的な値であり、 個々の地点における増幅度の評価に対しては、バラツ キがあることを十分理解した上で使用する必要がある.
- 【謝辞】震災予防協会,港湾空港技術研究所,建築研究 所,気象庁の観測記録を使用させていただきました. 【参考文献】
- 【参考义歌】
- 松岡昌志・翠川三郎:国土数値情報とサイスミックマイクロ ゾーニング,第22回地盤震動シンポジウム資料集,23-34,1994.
 (財)震災予防協会 ESG研究委員会:釧路市における共同地震
- 2) (用)展火力的協会 ESG研先安員会: 釧路印におりる共同地展 観測,データ集-,1994.
- (独)港湾空港技術研究所,港湾地域強震観測網, http://www.pari.go.jp/
- 4) (独)建築研究所, http://www.kenken.go.jp/
- 5) 気象庁, http://www.jma.go.jp/
- Association for earthquake disaster prevention, Japan working group on effect of surface geology on seismic motion, Strong motion database, Cooperative strong motion observation in Kushiro, Hokkaido, Japan, 1997.
- 7) 松岡昌志・翠川三郎:国土数値情報を利用した地盤の平均S波 速度の推定,日本建築学会構造系論文報告集,443,65-71,1993.
 8) 八幡夏恵子・佐々木透:表層地盤の非線形性と地形の増幅特
- 八幡夏恵子・佐々木透:表層地盤の非線形性と地形の増幅特 性への影響,第10回日本地震工学シンポジウム論文集,C5-5, pp.995-998, 1998.
- Midorikawa, S., Mstsuoka, M. and Sakugawa, K. : Site effect on strong-motion records obseved during the 1987 Chiba-Ken-Toho-Oki, Japan earthquake, Proceedings of the 9th Japan Earthquake Engineering Symposium, Vol.3, E85-E90, 1994.