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1. Introduction

In practical application, circular cylindrical shells are
frequently used and may be subjected to various kind of
loading such as pressure loading in the closed cylindrical
vessels, gravity load, water pressure and etc. It is common in
the field of tunmeling and pipelining that somehow the
cylindrical shells are placed on the soil as a foundation.
Knowing the basic soil structure interaction of the considered
problem is necessary to assess the behavior of such structures
properly. Partially distributed elastic foundation of the
cylindrical shell has been modeled by Amabili {1] but only
the radial displacement was being adopted.

The purpose of this paper is to introduce a method to
analyze the cylindrical shells on partially distributed elastic
foundation along the circumferential direction by taking into
account the end conditions and other displacement
parameters as been described above, subjected to any kind of
loadings.

2. Model
2.1. General

The cylindrical shells are modeled by using isotropic
thin elastic cylindrical shell element. The considered problem
is shown in figure 1. In this study, local stability of the
cylindrical shell is assured and satisfied for the whole
analysis. The stresses developed within the shell element are
considered relatively smail enough to prevent the local
instability such as buckling of the shell.

The soil as foundation is modeled by elastic spring
which is connected to shell in radial direction, but it is
possible by using the same method described here to include
the axial and circumferential spring. For the sake of
simplicity only radial spring is considered and distributed at
limited arc along the circumferential direction as shown in
Fig.1.

In the present study, since based on finite strip method,
which implied the generalization of the strip in one direction,
that is the circumferential, and then the foundation
distribution function has to be made general along this
direction.

Generalized strip and reference axis used in this paper
are shown in Fig.2. In order to do so, Fourier series is used to

Fig.1. Generalized model

define the radial elastic spring distribution as shown in (1), in
which K, is the radial spring constant, and an example for the
foundation distribution obtained by Fourier series for
@ =60" is given in Fig.3.

Fig.2. Strip and reference direction
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Fig.3. Foundation distribution
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2.2. Finite Strip Formulation

In finite strip method, the displacement function is
defined by simple polynomial in one direction and continuous
differentiable function in other direction. As for this problem
the displacement function is so been chosen a priori to satisfied
the problem’s boundary condition. The axial, circumferential,
radial and radial slope displacement function are shown as u, v,
w, and B respectively in (2) for an axisymmetrical problem.
After arrangement, the overall displacement can be defined as
given in (3), which is lead to the general form as in finite
element method. For axial and circumferential displacement,
simple linear function is used, but for radial displacement
cubic polynomial in longitudinal direction is used.
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The curvature changes and strain matrix of the elastic
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cylindrical shell is shown in (4) and the final arrangement is

given in (5).
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As soon as the strain matrix is known then the formation
of the stiffness matrix of the cylindrical shell can be obtain
readily by using the well known relation shown in (6), in
which D matrix is elasticity matrix.

[xs]- [ [8] [D][B] a¥ ©

Since the B matrix is involving the trigonometric and
also polynomial term, which can be integrated over the
volume numerically, but in this study, the stiffness matrix of

the shell is derived exactly by observing the nature of
integrals developed in each element of the matrix. The
foundation stiffness matrix derived by using (7) and (8) in
which the only element in K is corresponding with the spring
distribution in radial direction.

[Ke]= [ [N] [ [N @

00 0 0

[kaoo 0 0

1710 0 x8) O (8)
00 0 0

N matrix also contains the trigonometric term in m and
n, again more sophisticate observation to the nature of
integrals had to be performed in order to derive the
foundation stitfness matrix without any loss of precisions due
to numerical integration. Another problem is the combination
of m, n (harmonic term correspond to displacement function)
and ¢ (harmonic term correspond to foundation distribution
function) that after some fundamental trigonometric
transformations will form typical integrals shown in (9).
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These integrals have a value that is = only if
m+n=/{orm-n=/{, whereas the other combinations give
zero to the integrals. Knowing those facts, £ term can be
taken infinity, and as a result, the ¢ term always provide
sufficient number to give a value to the integrals developed
in the matrix under any combinations of m and n.

Furthermore, the foundation stiffness matrix will take a
full matrix form that implied the coupling phenomenon of the
term m and n, which is different from the form of shell
stiffness matrix.

The load matrix can be derived by the similar way as for
the stiffness matrix, since basically just generalized the
function of load in circumferential direction by the mean of
Fourier series, and the equivalent nodal load can be obtained
without any difticulties. Some load cases have been analyzed
to show the capability of the method described here for any
kind of loadings, such as internal pressure load, gravity load,
hydrostatic pressure, and enclosed liquid pressure load as
shown in Fig.4.
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Fig.4. Load cases

The assemblage of the whole equation and application
of boundary condition are the same as in finite element
method which is shown in (10).

[[Ks]+[K¢ ]]{8.} = {F} (10)

3. Numerical Result
3.1. Convergence

Numerical example presented here is dealt with the most
common load that is gravity load, with both clamped ends
condition, R/L = 0.025 ,t/L=0.00075 .k L|E=9.0x10"*
,4/E=5.0x10" 9 =60",v=030. Convergence rate are
given in Fig.4, 5, 6 for displacement, normal, and moment at
centerline section for total number of harmonic M = 5 . Total
deformation of analyzed middle section is shown in Fig.7.
The axial, shear, and twisting moment at middle section is
zero and the result assess this value by very small value
nearly equal to zero.
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Fig.5. Convergence rate of displacements

The convergence rate is influenced not only by the
number of strip but also by number of harmonic term. The
number of term which is needed for convergence is differed
for each problem. Problem with relatively large R/f on very
stiff foundation as a base, the convergence can be obtained
by increasing the number of term m. The only reason for this
is the sudden changes in displacements at near the border
between last spring and air.
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Fig.6. Convergence rate of internal forces
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Fig.7. Convergence rate of internal moment
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Fig.8. Total deformation of middle section

3.2. Parameter Relationships

The same problem with both ends clamped is considered
in this part by analyzing the middle section.

Radial displacement at boftom of ring section is
represented by total radial amplitude exactly, and the
circumferential displacement at side of the ring is represented
by total circumferential amplitude approximately. For
considered thick shells, the radial displacement at bottom or
top of the ring and circumferential displacement at side of the
ring is almost the same because of high sectional rigidity.

The displacement characteristics are influenced by the
confinement effect of foundation surrounding the shell and
can be seen in Fig.9-13.
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Fig.9. Variation of circumferential and radial total amplitude

with foundation stiffness parameter
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Fig.10. Varnation of circumferential and radial total

amplitude with radius of shell
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Fig.11. Vanation of circumferential and radial total
amplitude with thickness of shell
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Fig.12. Variation of circumferential and radial total
amplitude with radius of shell
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Fig.13. Sectional deformation

4. Conclusion

The present method is suitable and efficient for

analyzing the considered problem with good geometrical

representation to the actual structure condition. A word of

attention should be added regarding the convergence of the

result which

is indirectly influenced by geometrical

parameter of shell and stiffness of foundation. The method is

capable to assess the sectional deformation for the whole

structure.
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