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1. Introduction

Traffic flow is a complex dynamical system because of its
nature to under go sudden changes especially in dense traffic
conditions due to irregular stop-start situation and many other
contributing factors such as drivers' behavior, vehicles'
performance, traffic flow conditions, driving environment etc.
Chaos theory has been proved very useful in exploring many
complex dynamical systems e.g. weather forecasting, fluid
dynamics etc. A system is said to be in chaotic state when
long-term predictions is not possible due to omnipresent
uncertainty in determining initial state that grows exponentially
fast in time. The system is still deterministic in a sense that if
the initial conditions can be determined exactly the fiture
behavior can be predicted by integrating the time evolution
equations of the system. As there is always some imprecision in
specifying initial conditions of chaotic systems, the long-term
behavior becomes unpredictable while short-term predictions
can be made more reliable under certain circumstances. It was
observed that a periodic perturbation to the Equilibrium State of
car following model produces chaotic motion in some of the
following vehicles for some particular initial conditions to some
extent. The predictability of vehicular motion was measured
based on the value for KS entropy.

2. Car Following Model

Car following models attempt to mimic the microscopic
behavior of individual vehicles in a platoon. Collision
Avoidance model developed by Gipps' in 1981 was used to
simulate motion of vehicles. This model is attractive in a sense
that it is very easy for calibration, as it needs only the maximal
breaking rates drivers wish to apply which can be assumed
using common sense assumptions about the drivers® behavior.
This model was derived to calculate a safe speed with respect to
the preceding vehicle by setting limits on the performance of
driver and vehicle. This model assumes that the driver of
following vehicle selects his speed to ensure that he can bring
his vehicle to safe stop if the vehicle ahead comes to a sudden
stop.
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where a, and b, are the maximum acceleration and most severe
braking the driver of vehicle n wishes to undertake, s, is the
effective size of vehicle n, V,, is the speed at which the driver of
vehicle n wishes to travel, x,(t) and vy(t) are the location and
speed of vehicle n at time t and 7 is the apparent reaction time, a
constant for all vehicles. This model has two terms, the first one
limits a substantial proportion of the vehicles in free traffic flow
conditions while the second one is the limiting condition for

almost all vehicles. It was assumed that the transition between
these two terms occurs smoothly. Gipps verified his model
parameters and suggested that the some values that can be
assigned to simulate vehicular motion.

A platoon consists of a lead vehicle and N following vehicles
was simulated using linearized equation of motion. It was
assumed that prior to time t=0, each vehicles were traveling at a
constant speed v and distance headway d while at t=0, this
equilibrium state was perturbed, introducing a small sinusoidal
variation to the lead vehicle’s speed, v, (t)=v + A sin Q t, where
A, Q, v>0. The effects of this disturbance in lead vehicle’s
speed on other following vehicles were analyzed systematically
using simulation program. The above equations of motion were
solved numerically to calculate position of each vehicle in
platoon using Runga-Kutta Gill algorithm.

3. Numerical Results and Analysis

The computer simulation program was extended to produce
time series diagrams, post-transient phase diagrams, Poincare
sections, power spectrum, bifurcation diagram and spectrum of
Lyapunov exponent from simulated data of motion of vehicles.
These diagrams are popular tools to detect the occurrence of
chaos in a system. The value of Lyapunov exponent and KS
entropy were calculated to characterize vehicular motion and to
measure the predictability of the system respectively.

3.1 Sensitivity Analysis

Sensitive dependence on initial conditions is an important
characteristic of a chaotic system. It was conducted
systematically changing the values of each of model parameters
and observing effect on output results of simulation program.
Figure 1 presents time series diagram for all following vehicles
as an example. It is established that reaction time 7, braking rate
b, and speed V, are sensitive parameters of this model as
significant variations in output results were observed with small
change in the values of these parameters. While no such
variation were observed for all other parameters so those
parameters were treated as insensitive parameters and assigned
with some reliable values as suggested by Gipps.

The effect of V, is dominant only when the vehicles are
accelerating, as higher is the value of V,, the acceleration rate
would be higher. The reaction time (7) is sensitive in a sense
that the response of vehicle will be quicker if its reaction time is
smaller. The braking rate 5" influences the amlitude of
disturbance that is if b is less than by the disturbance will
damp, while if " is greater than by, disturbance will amplify.

Observing results of sensitivity analysis, some parameter
values were selected for which chaos can be expected for
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further investigation using Lyapunov exponent and power
spectrum.

Time Series Diagrams
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Figure 1: Time Series Diagram for t = 0.4 sec, b =:25
m/sec’, V, =N (25, 5%) m/sec
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Figure 2: Power Spectrum for 7= 0.4 sec, b" = -2.5 m/sec’

3.2 Power Spectrum and Lyapunov Exponent

Although a broad-banded power spectrum does not guarantee
the occurrence of chaotic motion but it definitely is a reliable
indicator of chaos. Power spectrum for first three following
vehicles are presented in Figure 2 for 1 = 0.4 sec, b =25
m/sec? as an example. It was noted that all vehicles except the

lead vehicle have broad-banded power spectrum indicating
possibility of occurrence of chaos.

Lyapunov exponent is one of the most effective and popular
tools to characterize a chaotic system. Wolf et al.” method was
used to calculate the value of Lyapunov exponent and it was
calculated to be zero for leading vehicle and 0.011, 0.012, 0.014,
0.016, 0.017, 0.019 for 1%, 2% 3%, 4% 5% 6™ following
vehicles for T = 0.4 sec, b = -2.5 m/sec?, N=7 and time=300
sec, while for T = 0.4 sec, b” = -3.5 m/sec’, N=7 and time=300
sec, the values of Lyapunov exponent were caiculated to be
zero for all vehicles. This indicates that in former case, the
vehicles exhibit chaotic behavior to some extent as the value of
this exponent is just above zero. An increasing trend in the
value of Lyapunov exponent was noticed along the platoon
indicating that the following vehicle behaves more chaotic than
the vehicle in the front.

3.3 KS Entropy and Predictability of Motion

The value of KS entropy can be determined approximately
simply by adding the values of all positive Lyapunov exponents
of the system. Car following model is a one-dimensional
system so it has only one Lyapunov exponent. It means, the
value of KS entropy shall be approximately equal to the value
of Lyapunov exponent. Following relationship can be used to
calculate the prediction time for vehicular motion.

T ~(1/x) logfL / €)

For the case of T = 0.4 sec, b" = 2.5 m/sec? and time=300, the
6% following vehicle has .= 0.019, if the precision of velocity
data thatis L/ ¢ is 1 in 10° then the prediction time is calculated
to be approximately 969.5 time units.

4. Discussion

It was observed that for particular initial conditions, a
periodic perturbation to the equilibrium state of the car
following model generates chaotic oscillations in some of
following vehicles to some extent. The motion of vehicles is
predictable even when chaotic behavior exists but such
prediction is valid only for a short duration of time. This paper
has presented theoretical approach to explore the complexity in
traffic flow dynamics as the data used was produced by
simulation program. The scope is limited further more using
only Collision Avoidance car following model. As a matter of
fact, no model is perfect to explain real-world traffic cases so
there is always some noise coming from the model itself.
Further study is recommended using time series data coming
from real-world traffic flow.
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