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ABSTRACT

Luai and Fujita had derived the equivalent
frequency transfer function (EFTF) of several runoff
models such as the Saint Venant equation, diffusion
wave equation and kinematic wave equation on a
mountainous slope. Fujita proposed the EFTF of
kinematic wave model considering river network. This
paper aims to lead the method to calculate the EFTF of

the Saint Venant equation and diffusion wave equation.

INTRODUCTION

Equivalent Frequency Transfer Function (EFTF)
has originally been used among control engineers to
analyze non-linear elements such as threshold and
saturation elements. Luai H. and Fujita M. had derived
the EFTF between rainfall and discharge from slope
using kinematic wave equation. This study has
developed an application of EFTF based on diffusion
wave model with zero depth gradient lower boundary
condition. Furthermore, we have developed the

application of EFTF to diffusion wave model from slope

to river network.

SLOPE CONDITION
Continuity and momentum equations of river slope

model are shown as eq. (1) and (2).
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where Ak water depth g, - discharge per unit width
r:rainfall t:time

x : distance along slope
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Iy slope gradient  ns: roughness coefficient

Initial and boundary conditions are

q,t0)=0, ¢,.(0,x)=0 ®3

NETWORK BASIN ANALYSIS

In this study, we focus on river network, which
consists of 3 unit basins. Definition of unit basin is a
basin consisting of 2 singles slopes and 1 channel. The

examples of unit basin and network basin are shown in

Figure 1 (A) and (B).

/.!\
» Lsr Isl %
—>X X <— .:§‘
o/ A2
Right Left ||, Sz,
Slope Slope &

¥ Unit Basin (3)

‘< g~ Channel

-3
=)
—-1a

54

.

- ——|

&

Fig 1(A). Unit Basin Fig 1(B). Network Basin
Continuity and momentum equations of river network
are
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Initial condition is
q; (tvo) =0

Where W and g are width and cross-sectional area of

q;

i=12 ®

channel. Subscript s, cand sindicate slope, channel and
number of basin respectively. To reduce the complicate
in derivation, we assume the condition at the junction
of each basin as eq. (7) while eq.(8) is the initial
condition of basin no. 3.
a,(t,1,) =a,(t,1,) = as(t,0) N
43(t,0) = q1(8,1.) + q2(&, 1) ®



Downstream condition is denoted in eq. (9).
["“3 ] ©)
y=l.

r(t)=r +Bel*
4,(,x) = 4,(x) + C,(x)e’™
h(t,x) = h(x) + D,(x)e’™ (10)

We assume that

Consider steady-state condition, we obtain
;:(x) = ;x 1
Refer to previous study, EFTF , Z,(jor,) ,of slope is

“ Flp,,p, +1, jor]

S

t in eq.(12) is expressed as
1/p.

Y
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a and p_are constants. F(a,b,c) denotes Kummer’s

confluent hypergeometric function. We simplify the
calculation by assume that each basin contain the same
topographical characteristics for example length and
gradient.

Therefore from eq.(4), (10) and (12) lead to eq. (14).
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Non-Dimensional derivation is introduced in order to

reduce related parameters. Non-Dimensional Form of

eq.(4) and (7) are

a.4 =a, t.T =t (15)
9.0, = q; yY=y 9.0, =q, (16
y. =1, g, =2, q.=2rl1, an
From eq. (5) and (15)-(17) give
-l WrlJ, 18
' N
19 - y
.= 1 2n W3Prl *
A N
The  continuity and momentum

equations can be rewritten in Non-Dimensional form as
denoted in eq. (20) and (21).
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The EFTF derived from Non-Dimensional equation is

2,9 - S8 - P B [s/3873,jer,) Y
Similar to dimensional analysis, we assume that
Q,(T.Y)=0Q;(Y)+C.; (V)T (29

A;(T,Y) = Ai(Y) + D, ;(¥)e’2T (25)
From eq. (10), (11), (16) and (17)
0.(T)=1+C, e =05+2 7 (jo) (26)
r

Initial and boundary condition for non-dimensional are

d_ﬁfﬂ . Q;0)=0 i=12 27
ay
0,0 =0, +2,® (28)
Eq.(29) are obtained from steady-state condition
0.=Y =12, 0,=Y+2 (29)

From eq.(14) and (26)-(29)

dY
aﬁl; Ladop (3D

Eq. (31) can be rewritten as

ddi F[l - __E;] (32)

dy A}°/3

From eq. (9), (29) and (32) yield non-dimensional
downstream condition as expressed in eq. (33) and (34).
A1) =3"° (33)

Ai(1) = A2(1) = 43(0) (34)

Eq. (85) is derived from eq. (24),(25) and (31).
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Substitution of eq. (35) into eq.(30), we can obtain

&sc, . dc, B, ,.
o 15 jagcummnnZzgw %Y
Where _10F o 37
fi,l st TE)
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2FQ, (38

To solve eq. (36), we need initial condition as following;

C..(00=C.,(0)=0 (39
C.;(0)=C.,()+C,, (1) (40)
D.,=D,,(1)=D,,(0) (41)

At the junction of each basin, we consider
[dC,J] _ [dcc,z ] . [dC,;, ] (42)
dyY ¥l dy et dy Y0

d*c,;

dy?

43)

Y=l

Relationship  between  dimensional C, and

non-dimensional C L is

C
C., =t (44
"2,
The definition of Z J(]@ is
G i =1,

We can rewrite eq.(36) for basin no.3 as

diC, ac., . - fuuZ,(jQ)
dsz - fl,l dYJ - JQ fl.zCeJ = 'TJ (46)
Z,(jo)=C_5(1) @7

The gain and time lag characteristics are

G(w) =|Z,(jw)|> TL(w)-__L%M 48)

We need numerical calculation in order to check the
accuracy of theoretical method by assuming the
following rainfall. )
r(t) = r + Asin(er) (49)
Where A means the constant amplitude. Figure 1 shows
the schematic relationship between a sinusoidal input
is calculated

and its output. The gain function

numerically as

B
G0 == (50)

The time lag function, T, (w) is calculated by the time
interval between both sinusoidal peaks as shown in Fig
2. Solid line in Figure 3 show the vector locus, gain and
time lag function obtained from theoretical method
(eq.48) while the circled dhow the results from
numerical calculation. It is observed that both results

agree together. Numerical data is expressed in table 1.

slope channel
Length 1000(m) 5000(m)
n 0.5 0.05
1 0.106 0.022
Ds 5/3 5/3
width 2(m)

Table 1. Applied Data for numerical calculation
r(t)

Fig.2 Schematic relationship between sinusoidal input

and its output.
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To simplify and reduce calculation time of the method
above, we neglect second order derivative at the

junction of basin No. 1 and 2 as expressed in eq. (51).

2 2
[" Cal _ [d_C_Z] -0 )
Yal

dy* dy*

Y=1

The obtained vector locus, gain and time lag function,
without considering of eq.(51),have been compared to
the considered one. Figure 4 illustrates the comparison

of results.
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Fig.4 Comparison of results with (solid line) and
without (dashed line) considering of eq. (51)

From the figure, it is noticed that the computational
results agree together. Therefore it would be useful
when we simplify the calculation by including eq. (51).
The achieved EFTF of general basin can be leaded to
simpler estimation of discharge. Its vector locus shows
that we can apply second order differential equation to

describe runoff system as shown in eq.(52)

d’q . dq
G,—+G,—t+q= (62)
g g Tt

q(0) = o,d—q =0 (53)
t =0
EFTF of eq.(52) is
1
Z (jo) = ———
= 1-G’ + jGyw (54)
_—LEZ1 (55

G, - 1,{1-_,%} 'G
o’ RZ]+I%[Z]

Therefore we suggest the possibility to use parameters

2" w(RZ]+12(Z)

G, and G, to estimate amount of discharge in

further study.

CONCLUSION

The diffusion wave, one of distributed parameter runoff
models, was analyzed by wusing the equivalent
frequency transfer function (EFTF). The word “EFTF”
means relationship between rainfall input and
discharge. In this study, we had derived EFTF for the
simplest model or slope. The theoretical results agree
with the one calculated from numerical method.
Therefore the model was extended. Consequently EFTF

for general basin was derived.
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