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1.ABSTRACT

There are two ways to described deterministic
rainfall runoff model : first is a lumped parameter model based
on ordinary differential equations and second is a distributed
parameter model obtained from solving partial differential
equations. This study proposes lumping process of kinematic
wave model through “Equivalent Frequency Transfer Function”
(EFTF). This method, which is originally used among control
engineering, is applied to obtain the lumped parameter model

for kinematic wave equation.

2.INTRODUCTION

EFTF is used to obtain the dynamic characteristics of
non-linear elements such as saturation and hysteresis elements
in the field of control engineering. In this paper, we adopt
non-linear runoff model such as kinematic wave model instead
of above non-linear elements and obtain EFTF after expansion
of original EFTF’s notion. The so-called equivalent frequency
transfer function will be employed in order to specify the

relationship between rainfall and discharge.

3.SINGLE SLOPE ANALYSIS
First of allthe continuity and momentum equations of

kinematic wave runoff model are

0
%+;qx‘—=r(t) O=x=<l (0))
g =ah® @

where £ : water depth ¢ : discharge per unit width

1 : slope length ¢ : time
a, p,:constants  x : distance along slope

To determine the solution requires the initial and boundary

condition;
q,(0,x)=0 A3)
s (t’O) =0 1))

In order to derive EFTF, we assume that

r(t)=r+4e’* ; r>4 ®)
h(t,x) = h(x) + B(x)e’* ©)
q,(t,%) = 4,(x) + C(x)e’ )

in which j :imaginary unit  : frequency
r,h(x) and cz (x) show rainfall , water depth and discharge
at steady state and satisfy equations below.
h0)=0 , 4,(0)=0 ®

B(x)and C(x) are unknown complex functions.
Eq. (9) is derived from eqs.(6)-(8).

B(0)=0 , CO)=0 &)
The substitution of egs. (5), (6) and (7) into egs. (1) and (2)
yields eq. (10).
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The solution of equation (10) is;

=\{1-ps)/ps

x . (1-ps)/ ps x2
- ﬂ[ﬁ] s f ﬂ[L] /ey
ap, | a ap, | a
C(x)=e ™ fAe" : dx,
0
. =y (=px/ps) . =\ (-ps)/ps
_ﬂ(L] s x ﬂ(L) s
ata aja
=Ae fe dxl (11)

0

The EFTF, z (jw) betweenr(r) and g ; (1)) is defined by;

2,jw)= 2 (12)

From eqgs.(11)and(12),we obtain

Zs (]Cl)) - e-faxclj:eiaxcl)’luk dyl (13)
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=e " F(p,p, +1, jor,) (14)
—1-p, ! 1/p,
e [' ] 1s)
a
where | F (a,b,c) denotes Kummer’s confluent hypergeometric
function defined by
2 3
(b 1422, 200" alaDatde | o (16)
b b+l  3bB+D(B+2)

t,,in eq.(15) means concentration time over 7 on the slope.

4.UNIT BASIN ANALYSIS
Definition of unit basin is a basin consisting of 2 single

slopes and 1 channel shown in Fig.1.
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Fig.1.Top view of Unit Basin
We also adopt kinematic wave equation for channel flow.
Continuity equation and momentum equation can be written as;

g,
at oy

= qsr (t’l:r) + qsl (t’lsl) (17)

q. = pa™ (8)
Subscript sr,s1 and ¢ specify right slope,left slope and channel

respectively. Initial and boundary condition are;

q. (t,O) =0, q. (07 y) =0 (19)
we assume that
a(t,y) = a(y) + B(y)e’™ (20)
q.¢y)=4.(0)+C.(y)e™ @
Refer to €q.(7),right side of eq.(17) is described by;
q:r (t’ l.\'r) = asr (lsr) + C:r (l:r )e Jex (22)
04 (1) =44 (1) + Co()e™ 23)
Substitution eq.(20) - eq.(23) into eq.(17)-(18) gives
1-p,
dc 1 f1- Pe
—+ jo—=r(, +1,)y C.
dy Pp. {/3 '
= Csr (l.vr) + C.\'l (lsl) (24)

C.(0)=0 (25)

The EFTF, Z, (jw) between 7 and g, (t,l.) is defined by,

PR X () (26)
2O =, + 1)

Similar to previous calculation, Z, (jw) is obtained.

2,o) =2 7 (o) 1,2, @D
sl

l.rr
where
z,(jo)=e’"= F[p,,p, +1 jox,, ] 28)
Zsl(jw) =e—juu’1E[p:’P5 +1’jwtcsl] (29)
Z (jo)=e ™= Fp.,p, +1jox,] (30)
and
—~1=p 1f gy
. =[r 'f,,] (31)
aﬂ'
[F""‘z‘, ]w' (32)
rcﬂ =
Gy
(B ™ (33)
(<4 ﬁ

5.NETWORK BASIN ANALYSIS
We focus on river network shown in Fig.2.It is possible to
extend the results from such river network to further complex

one.

@

NN

Fig.2. River network model

Continuity equation and momentum equation are

da, 9q,
2+ =2 =g, (t,15) + qus (1) G

ot dy
2= B >

Subscript sr,sl,c and number specify right slope, left slope,
channel and number of basin respectively.

Initial condition is

9.5(6,0) = 4, (t,1,) + 4., (t:1,) (36)
we assumed that,

Gt y3) = @03 (3) + Coalls)e™™ €p)

4a(t:hy) =90+ Call,)e™ (38)

4 (t.l) =40 () +Cor(5)e™ (39)
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From single slope and unit basin analysis,

asrB(l:ﬂ) = ;l:r3 ’ Esl:f([sIS) = ;1:13 (40)
‘;cl(lr:l) = ;lcl (l:rl + l.rll) = ;Ai (41)
Ecz ()= ;lcz (Catip)= ’—'Az (42)

Additionally, we assume that
a, =as(y)+B(y)e’™ “3)
43 = 4.3 (7) +C(y)e’™ (44)
After substitution egs.(36) to (44) into egs.(34) and (35),we

obtain

=T

3

d—c+ jwﬁ{i; Uy +Lp)y+r(4, +A2)} c

dy
=C,3(;3)+Cy3(l3) 45)
where  C(0)=C,,(L,)+C,,(,) (46)
and Al = Icl' (lsrl' + l:li )’l = 1’2’3 (47)

Definition of the EFTF, Z,(jw)between ¥ and q.4(t,L,) 18

denoted by
v Cls) (48)
Z,(jw) A4
in which A =A+4,+4, (49)
Finally,

2,(0) = HAZ, () + A, (w0

e-lﬂ":.\

+ I_l_&rizuS +1,3Z 5 kAr 1Fullee,pe +1, jot 4]
w3 Fhgs

- (4, + 4),Fp.;p. +1, jor ,]}] (50)
where 1 (4, + A4,) e (51)
P e+l B
= 1/p.
foo 1 rd, (52)
? 1oy +is)\ Bs
6.CASE STUDY

In this section,we show gain and time lag function using
topographical data.Eq.(53) denotes an example of topographical
data obtained from Rumoi river basin.

L, =(1486,1007,10256)
L, =(976,1188,7547)
L, =(567,167,1373)

0, =(0.067,0.113,0.007)
0, =(0.143,0.087,0.020)

0, =(0.072,0.202,0.004) (53)
Ll. (right slope,left slope,channel,m)means slope and channel

length at i unit basin shown in Fig.2.

9,- (right slope,left slope,channel,rad.)means slope and channel

q <th ., q 0 =1
gradient at 1 " unit basin shown in Fig.2.

Definitions of gain and time lag function of EFTF, Z(jw)are

G(w) =|Z(jo) G4

T,(@)=" L{Ew( jo)} (55)

Fig.4 (A) illustrates vector locus(relationship between Re(Z) and
Im(Z)) of basin3. Fig.4 (B) and (C) show gain and time lag

function of basin 1,2 and 3.
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Fig 4.Vector locus,gain and time lag function

Slim solid line represent gain and time lag function of basin 1,
dashed line represent gain and time lag function of basin 2 and

thick solid line is used to signify gain and time lag of basin 3.
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The vector locus depicted from eq.(48) is comparable to the one
obtained from second order differential equation.Therefore,the
assumption of second order differential equation will be adopted
to describe the kinematic wave runoff system as described by

€q.(56).Initial equations are shown in eq.(57).

d'q, cdg . _ (56)
h dr? +fx dt Sy
4(0)=0> [ﬂl_] -0 (57)
dt |,
EFTF of eq.(56) is
. 1 . : (58)
Z =———— =Re(Z(jw))+Im(Z(jo
(jw) = f@)+ @) (Z(jw))+Im(Z (jw))
Eq.(59) is derived from egs.(56) to (58).
4 o ZReZ)+ Re?(Z)+Im*(2) Im(Z) (59)
' 0’Re}2)+Im*(Z)) TP w(Re (Z)+Im*(Z))

Fig.5 (A),(B) and (C) show relationship between f,, f, andw.
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Fig.5 Relationship between f,, f, andw

In figures above, solid lines stand for f, while dashed lines

stand for fa-

It has been proved that if eq.(58) is practical, f, and f, will be
constant along @ .According to fig.5,it is observed that only
low frequency domain can explain this phenomena. However,
from fig.4 (B),gain tend to decrease as frequency increase. This
means main effect is based on low frequency.Then it is possible
to adopt €q.(56) to evaluate discharge of runoff model as shown
in example below.

Consider at frequency

equal to 0.1 of basin 3,

Approximated f, and £, from fig.5(C) are 9.6 and 5.4 respectively.
Rainfall is expressed by rectangular rainfall shown in fig.6.
Comparison of results from eqs.(34),(35) and from eq.(56) are
illustrated in fig.(7).
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Fig.6. Adopted rainfall
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Fig.7. Comparison of discharge from eqs.(34),(35) (thick solid
line) and from eq.(56)(slim solid line)

7. CONCLUSION

Previously, several papers focus on lumping process of the
mountainous slope of basin. However, the proposed method
here provides the lumped model which its basin consists of
many slopes and channels. This paper shows obtained lumped

model can be expressed by the second order delay system.
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