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1. INTRODUCTION

The problem of monitoring traffic flow
from isolated detectors has a new attracted high
interest in the wake of two important world
research projects which intend to revolutionize
traffic of the future by means of informatics and
control engineering. In the past, the problems of
state surveillance and incident detection have been
solved separated by several authors. In these
approaches the measurement data are processed
by refined estimation method or filtering
techniques to extract missing information from
the time sequence of the measurements. The basic
idea of the most efficient methods applied to these
problems follows a common scheme, using a
dynamic model for the process of traffic flow. A
prediction is made for the actual measurement.
The error is used by a more or less sophisticated
rule to update and improve the estimates. In this
way estimators have been design which under
hypothesis of fixed model parameters produce good
estimates for density and speed values along a
section of a road. Remarkably few procedures
have been proposed for the estimation of unknown
or changing model parameters under the premise
that traffic flow is not congested and not disturbed.
Simifarly, only few authors have applied this
efficient estimation scheme for the purpose of
automatic incident detection. No research work
is reported on simultaneous estimation of system
state with incident detection. Intuitively, one
might expect that there is a natural boundary for
the amount of information which can be extracted
from a set of measurements by whatsoever
sophisticated data processing method. Actually,
as investigations have shown, a simultaneous
estimation of traffic state with detection of
incidents raises problems. Obviously, if
overcharged, the above mentioned recursive
estimation scheme has difficulties to interpret
the prediction errors correctly when too many
variations of process variables and parameters
are allowed to occur. This may be understood in
that way that 100 many ambiguous options are
given for the estimator to interpret the phenomena
observed indirectly in the measurement.
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2. PROBLEM STATEMENT

In practice, the transitions of traffic state due
to changing demand caused by weather conditions
and different driver behavior may often occur at
the same time. Moreover, an incident may happen
at any time and should be detected by the overall
surveillance system whenever it occurs.
Consequently a monitoring system must cope with
this situation and produce reliable estimates even
under difficult conditions. In this paper, the
combined estimation problem is treated. Based on
theoretical analysis using selective observed data
and simulation models, it is investigated that how
the above mentioned separate problems can be
solved simultaneously and in what combination they
interfere. The limits of what can be estimated
simultaneously are identified and a feasible solution
to this overall surveillance problem is given.
Figure 1 shows the block diagram adopted in this
parer.
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FIG.1 Block diagram of estimation scheme

We present first in the 3rd section the components
of models which are necessary for estimating
traffic states and detecting incidents. Then in 4th
section selective observed data are introduced
which are used for the theoretical analysis of the
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problem. The results of this analysis are
underlined by simulation studies in the 5th section.
At the end of the section, possible solutions to the
extended estimation problems are combined with
simultaneous estimation of various variables.
Finally, future works are given.

3. COMPONENTS OF THE MODELS

3.1. Macroscopic Simulation Model

As it is shown in Figure 1, the most important
part of estimator system is a dynamic maode! which
comprises the rules and mechanisms by which
the process variables interact and react 1o external
influences . The model which was chosen as the
most adequate for the given problem describes
traffic flow dynamics by aggregate flow variables
of density, average speed and volume [1][2]. Let
us consider a section of a freeway which for
convenience is subdivided into several road
segments with a length of about 500 m (Figure
2). With respect to this space-discrete
configuration the foliowing variables of traffic

flow are introduced:
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FIG. 2 Discretized section of a freeway

¢ (k) traffic density in segment i [veh/km]
v,(k) mean speed within segment i [km/hr]
g (k) volume from segment i into i+1 [veh/hr]

w, (k) mean speed from segment i into i+1
[km/hr]

r.(k),s(k) possible entering or leaving ramp
volumes [veh/hr}

Using these variables, a simple balance for the
vehicles within segment i at time k+1 gives the

following difference equation.
c;(k+1)=c(k)+ alac, v, +(1-2a)c,y;

_(1 a)c]+l j+1 —1 -Sj—l ](k)( 1

The following difference equation for section
average velocity which was formulated according
to empirical observation has proved to be quite
realistic

v (k+1)=v,(k)+ L[y (c,) - v.](k)
Crn (2)
[ ](k)

+ZT;[V]~(V;-1 ‘Vj)](k) + 3

In this equation the first bracket term on the
right side reflects dynamic adaptation to the steady
state speed-density characteristic V(c,), the
second term accounts for the convection of foreseen
density gradient in the downstream direction.
Traffic volume and mean speed which will be
measured only at a distances of several kilometers
(at the boundaries of the section ) can be expressed
within the section according to the rules of
hydromechanics as a product of density and
velocity. Because of the allocation at the end of
segment. a weighted average seemed to be
appropriate.

q,(k) = ac (k)v, (k) +(1-a)e,, (k)v,,(k) (3)

wj(K)=avj(k)+(l—a)vm(k) (4)

In a refined modeling approach it seems to be
reasonable to make o dependent on density. With
respect to the increase of computational effort
when o is a function of density, it was decided to
keep o« constant. A domirating function within
these dynamic model equation is the steady state
speed-density characteristic V(c,).

V(e)-v, 1_(;,. )

where V, is the free velocity, ¢, denotes jam
density and m and | are positive real numbers.
Equations (1) to (5) for (i=1 to N) establish a
nonlinear time discrete model of order 2N for
the dynamic phenomena of traffic flow within the
section. The equations contain a number of
parameters time constant ¢, density constant «
, sensitivity factor v, weighting factor « and
the four parameters in Equation (5) which have
to be calibrated to bring the model close to reality.
In the context of our problem, this means that
on-line identification of only these two
parameters may be necessary when traffic or
weather conditions change. This was confirmed
again by our investigations within the research
work reported here. To complete the model
description we have to formulate equations which
link the measurements volume and local speed on
both ends of the section to the state variables of
the model. This is not a trivial task since depending
on traffic conditions, these variables sometimes
depend more on the situation inside the section
sometimes more volume q, and local average speed
w, at the upstream end are determined by traffic
flow conditions before the section while the

(5)
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measurement q, and w, at the downstream end
reflect the conditions inside the last segment. With
congestion the direction of causal interaction is
inverted and an opposite reasoning holds. Earlier
investigations have shown that for estimator
design the following assignment gave the best
result. The entering volume q, is treated as an
external input while all other measurements w,
q, and w, should be treated as system reactions
being connected with the state variables by:

gy (k) =[ev, ~ae(c,v, ~ o )](k) 6)
w, (k) =[v, —a.e(v, -v)]y 7)

qn(k) = [cnvn + (1 - Q)E(cnvn =CVaa )](k) ( 8 )

W, (k) = v, + (1= (v, ~ o ©

To overcome these difficulties, the model has to
be extended to include variations of environmentai
road conditions and the possibility of an incident
as it will be shown in the sequel.

3.2. Filtering Model:

Since the detection scheme developed in this
report is based on Kalman filtering principles,
an extremely brief review of concepts of the (KF)
is appropriate [3]. A nominal solution of the
nonlinear differential equations must exist. This
solution must provide a "good" approximation to
actual behavior of the system. The approximation
is "good" if the difference between the nominal
and actual solutions can be described by a system
of linear differential equation. These equations
shall be called "linear perturbation equations”.
Suppose that the state x, of a dynamical system
evolves according to the vector differential
equation

Xy = fO X U+ W,

The linearized equation can be written as:
Xy = A X+ W, (10

The independent variable (t) can be assumed the
values (1 <t ,....<t,). where the t is not
necessarily equidistant. The state of the system
att, is given by the (n)-dimensional vector x,.
A is a known (nX n)-dimensional dynamic system
matrix. where

4 -

oo

Theu, is input variables the interval [t t,) .
The w, is a vector random sequence with known
statistics
E{wl]=0 for all (k)
Elwow']=Q06,
where &, is the Kronecker delta. The matrix
Q, is assumed to be nonnegative-definite, so it
is possible that (w, = 0). Suppose that at
each time t_is available (m)-measurements Y
that is nonlinearly related to the state which is
corrupted by additive noise.

Y = g( Xk) + Ve
The linearized equation can be written as:

\ Ckxk Y (11)

C. is a know (mxn)-dimensional observation
matrix. where
_9%

ox
The measurement will not be precise, so the errors
v, are assumed to be additive and uncorrelated
between sampling times. The correlated noise
processes are introduced as following.

The vector v, is an additive random sequence with
known statistics.
E[v, ]=0 for all (k)
Elv,v,"1=R, 58,
The matrix R, is assumed to be nonnegative-
definite unless otherwise stated. Further, assumed
that the random processes w, and v, are
uncorrelated. These processes will be called white
noise sequences
Elw,v']=0 forall (kj
E{fwx,1=0 foral k
The mathematical model described above provides
the basis for all succeeding discussion. In this
paper we shall deal with a problem of considerable
importance in engineering practice.
3.3. Incident Detection:

The Multiple Model (MM) method ot traffic
incident detection developed in present study
relies strongly on Kalman Filtering theory.
Therefore, in order to understand the (MM)
method, some background on the Kalman Filter
(KF) will be developed. Under these conditions

the probability density function of r, is given by
r(k)= (¥ - 6x’)

S

p(r) = [(zn)mlzl]_oj.e-%(rl‘x"lr) . ( 1 2)
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3 is the precomputable covariance matrix of r(.)
and | 3 | which represents the determinant of
Z and (m) is number vector of r,(k). The previous
section has presented the equations and properties
of the (KF). The principle property of interest
here is test Equation (12) can be thought of as
giving the instantaneous probability of observing
a given residual vector r(.). This information
can be used to construct an identification method.
Assume that a given linear, time-invariant "true
system" is known only to be one of {N) possible
systems (A, C,Q, and R, i=1 to N). One (KF) is
computed for each possible system and the
instantaneous probability p,(k) of each residual
r,(k}, evaluated for (i=1 to N). These
instantaneous probabilities are then combined
using Equation (13), which is based on Bayes
Rule, to give a posterior probability p(k) that
each hypothesized model is in fact the true system
model.

Pk+1)= #M
Zp,(k)p,(m)

This method is summarized by Figure3.

(13)

KF probability
'H far Made! Density
1 Calcuation 1

KF probability

e for Model  ffpum{  Dersity
2 Caleuation 2
ra() pal)

—» P
Probability & P,
Calculator

Unkown
System
{ONE of N
Systems) Equation

(13)

> Pyl

probability
Density
Calcuation N

KF
for Model
N

FIG.3 Flow chart of the multiple model method

4. THEORETICAL ANALYSIS

To analys simulation model, we need to use
equations (1) through (9). To make initial
condition, in this model g,, r and s are
measurement data. we have to divide the section
into n segments. Then the amount of ¢, v,, g, and
w; in each segment in a given time must be

w, in each segment in a given time must be
estimated. These amounts after comprising to real
data, show differences between real condition and
estimation, By using sequential corrections on
parameters to then approaching to more real
resuits.

To analys filtering model, it is necessary to know
simulation results in each step as it is expressed
in equations (10) and (11). Because it is a pre-
estimation for filtering. where

X(K) =[G, Vs e G Vg [TAARE
y (k) = [q1’W1‘ """""" YinWn] Tk

Also by changing number and location of
measurement variables, we are able to analyse
various conditions. This can influences on
daynamic system and observation matrix. Finally,
we make sensitivity analysis of estimation. Let
us assume that the first observation occurs at t,,
the sequence of operations that is performed at
each sampling time can be described by the
following steps;

(1) At t,_initialize p, , x|, andv, let t = t, (
Reapingk =0to N)

(2) Form the projected estimate of the covariance
ot the estimate error.

T T
M, = Ak-nk PA ek TV

(3) Compute the kalman gain matrix.

Kk = Mk CTk—I,k [C MKCTK»LK + Wqu

kk-1
(4) Form the estimation of the state at t, form
the measurement vy,.

Xﬂkz Ak-V,kXAk+ ka[ Ye - yAk ]

(5) Compute the covariance of the error in the
estimation
Pe =M - K. GM,

(6) Updated time to t, and return to step (2)
with all indices incremented by (1).

To analys incident detection, we need the results
of simulation and filtering model and application
of equations (12) and (13). Theoretically, one
set of kalman gains is needed for each freeway
condition. That is, the gain for each (KF) should
be calculated separately. However, because of the
nature of the differences between the various
models, the kalman gains are very similar.
Furthermore, recent theoretica! results indicate
that filter performance depend mostly on accurate
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dynamic modeling and on the kalman gain. Thus,
the same kalman gain has been used for all KF's
states to the states of the most probable model.

5. RESULTS

After this theoretical analysis the combined
estimation problem was experiment by numerous
simulation studies in different configurations. The
measured data were partly generated by a
microscopic simulation model when incident
detection was included and partly by a macroscopic
models as described in section (2) subjected to
noise where by the initial states or parameters
were treated as unknown for the estimation
routine. For the estimation, the procedure of the
extended kalman filter was applied to the model
equations (1) through (13). Information is
obtained from selected area of Metropolitan
Expressways Kanagawa Route (1), Yokohane Line
(K1), three sections. The first link A was chosen
according to figure (2) with (8) segments, (2)
on-ramp and (3) off-ramp total length of (5.13)
kilometers, the second link B was chosen according
to figure with (12) segments, (2) on-ramp and
(1) off-ramp total length of (8.55) kilometers
, third according a junction between link (A)
and link B. As it is illustrated in table (1), the
simultaneous estimation of different variables
and points together with the Root Mean Square
errors r.m.s. of measurements-simulation and
measurements-filtering of flow and mean speed
in the location check point with simulation and
filtering conditions. Figures (4) and (5) are to
be comprised between r.m.s. of simulation and
filtering of estimation result about various
variables and points. For example, figures (6)
and (7) are shown that a short time of output in
condition number (7). In figure (8) it is shown
an evaluation of .incident probability in a short
time in the link B of segment (7) and at the same
time, there is not any probability of incident in
segment (2). They can be used for detection of
incident.
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FIG.4. Effects of the number of measurement
variables (Flow).
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FIG.5. Effects of the number of measurement
variables (Mean Speed).

Condition Neasurement Flow ¥ean Speed Check Point Nodel
(Variablies & Points) (veh/min) (km/hr) (between segment)
0 G 63. 83 32.93 2-3 Simulation
1 Goy Wa 63. 21 31. 31 2-3 Filtering
2 9 g. 62.51 26. 07 2-3 "
3 D % 61.21 28.92 2-3
4 Qo Wor W 60. 71 28.78 2-3
5 9 Qu Q. 60. 58 22.85 2-3
6 9oy G W 56. 61 21. 60 2-3
17 Gor Woy Qo ¥, 44.05 20.71 2-3

TABLE.1. R.M.S. Error for each measurement condition,
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FIG.7. Comparison of estimated mean speed
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FiG.8. Evaluation of incident detection

6. CONCLUSIONS

in this paper the practical important
probiem of combined state estimation and in¢ident
detection for traffic flow on a section of a freeway
is considered. Applied condition and mode! and
results are classified into two groups, Simuiation
and Filtering estimation. In order to be capable
for the substitutions for real conditions.
Simulation estimation model, q, was regarded as a
network input. Finally, we are able to approach
to real condition. Filtering estimation depends on
simulation estimation. Dynamic system matrix,
observation matrix and error matrix are affected
by measurements data. We discussed them in two
sections, the first is measurement variables in
which q,, w,, g, and w, are as variables. The
second is measurement points in which the couple
of variables in different locations are considered,
such as (g, W), ... (W), ... (g, w,). All of
the couples have valtuations network condition. By
doing it, we are able to reduce errors and explain
real conditions in better manner { 0 < r.m.s. of
filtering = r.m.s. of simulation).
Estimation of applied coefficient in our models,
specially « and ¢ are affected by light traffic
condition and congestion traffic condition. In other
words, the value of a and ¢ are not stable. These
coefficients also minimize the total errors.

In the future, to apply the filtering technique
to extensive freeway network, we have to engage
in the following;

-The improvement of traffic flow models to
estimate traffic states more precisely.

-The development of sophisticated technique to
detect incidents.
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