超高強度吹付けコンクリートの大土被りへの 適用性検討および解析手法に関する一考察

横畑 友幹1・大塚 勇2・板垣 賢3・蔭山 凌4

1正会員	大成建設株式会社	土木本部土木設計部(〒160-0606 東京都新宿区西新宿 1-25-1) E-mail: ykhyuk00@pub.taisei.co.jp
2正会員	大成建設株式会社	土木本部土木設計部(〒160-0606 東京都新宿区西新宿 1-25-1) E-mail: ohtsuka@ce.taisei.co.jp
3正会員	大成建設株式会社	土木本部土木設計部 (〒160-0606 東京都新宿区西新宿 1-25-1) E-mail: itgkn-00@ce.taisei.co.jp
4正会員	大成建設株式会社	土木本部土木設計部(〒160-0606 東京都新宿区西新宿 1-25-1) E-mail:kgryu-00@pub.taisei.co.jp.

大土被りで低強度の地山にトンネルを掘削する場合,大規模な変状への対策として,従来,多重支保工 や導坑先進工法などが採用されてきた.当社で開発中の超高強度吹付けコンクリート¹⁾²⁾は,材齢 28 日で 圧縮強度が約 100N/mm² と高い強度を有しており,従来の対策と比較して,工程短縮や工費低減が可能と なり得る.本稿では,まず,吹付けコンクリートの剛性発現を考慮した 3 次元逐次掘削解析の結果を基に, 超高強度吹付けコンクリートの適用範囲を検討した結果を示す.次に,この解析結果より,超高強度吹付 けコンクリートを 2 次元解析で扱う場合の応力解放率および吹付けの等価弾性係数について検討した結果 を示す.

Key Words: numerical analysis, ultra-high strength, shotcrete, stress release rate, elastic modulus

1. はじめに

大土被りで地山強度が低い条件下においてトンネルを 施工する際,大規模な変状により,特別な対策を余儀な くされることが珍しくない.従来,このような条件への 対策として,多重支保工や導坑先進工法などが採用され てきたが,いずれの対策についても工程の長期化や工費 の増大を免れない点に課題があると考える.

表-1 に示方配合を示す²⁾, 超高強度吹付けコンクリート(以下,超高強度と称す)は,従来の吹付けコンクリート(以下,従来型と称す)と比較して,若材齢時から高い強度を発揮する一方で,若材齢時の弾性係数は比較的,抑制される性状を有する¹²⁾.したがって,強大な地圧へ抵抗する耐力を有する一方で,柔軟な変形性能によって必要耐力を低減できる効果があると考えられる.

ところで,冒頭で述べたような特殊な条件下における 支保設計では,解析的な手法を用いるのが一般的である. 近年では,忠実に掘削過程を反映させた3次元解析によ る場合も少なくないが,設計作業にかかる時間やコスト の観点から2次元解析が用いられることも多い.そこで, 本稿で取り扱う超高強度を2次元解析に取り入れること を考えた場合,従来型との材料特性の相違から,解析に 用いる応力解放率や吹付けの等価弾性係数といった各種 パラメータについては,改めて検討が必要であると考え られる.

以上より本稿では、吹付けコンクリートの剛性発現を 考慮した3次元逐次掘削解析を行い、はじめに、超高強 度と従来型の適用範囲を比較することで、超高強度の優 意性を確認した結果等を示す.次に、3次元逐次掘削解 析の結果を理論式を用いて整理することで、超高強度を 2次元解析で取り扱う際の応力解放率と吹付けの等価弾 性係数の設定に関する考察結果を示す.

表-1 超高強度の示方配合²⁾

	単	立量(kg/n	m3)				
水	セメント + 混和材	細骨材	粗骨材	高性能 減水剤	急結剤 (粉体量×%)	スランフ [°] フロー (mm)	空気量 (%)
190	1118	693	462	13.4	2.8	792	2.3

2. 数値解析の概要

本研究は、吹付けコンクリートの剛性発現を考慮した 3次元逐次掘削解析の結果を基に検討を行っている.

解析モデルを図-1 に示す. トンネル断面は直径 13.6m の円形とし、土被り相当の初期地圧(単位体積重量と土 被りの積)を等方等圧に与えた状態から、掘進長 1.0m で全断面掘削・支保設置のステップを繰り返すものとし ている.支保部材は、吹付けコンクリートのみをシェル 要素でモデル化し、地山は、線形弾性体もしくは弾完全 塑性体(降伏規準: Mohr-Coulomb)としている. 吹付け 材料は、超高強度と従来型の2通りを想定し、これらの 弾性係数は、実験値¹⁰より得た対数近似曲線および推 定式 3から図-2に示すものとして 1ステップごとに物性 値を変更している.1ステップに相当するサイクルタイ ムは、実績等から 8.3 時間としている. 解析コードは FLAC3D(有限差分解析)を用いた.各検討に用いた物 性値や解析ケースの詳細は、各章で述べる. なお、トン ネル掘削中の排水は十分になされているものとし、支保 部材に作用する外力は掘削解放力のみとしている.

図-2 吹付けの剛性発現とモデル化の概念図

3. 超高強度の適用範囲検討

(1) 解析ケース

本検討で実施した解析ケースを表-2 に示す. 土被り (初期地圧) は 500m としている.

(2) 検討方法

検討断面はモデル延長の中央とする.トンネルが安定 であるためには、周辺地山・支保部材がともに健全であ る必要があると考えられる.このことから、これらの健 全性は、検討断面におけるトンネル半径方向の壁面変位 と吹付け応力の2つの指標で確認することとし、各解析 ケースについて、2つの指標が照査を満足する地山条件 (土被り・地山の変形係数)を適用範囲として定義する こととした.照査を満足する土被りは、解析結果と照査 に用いる許容値から、換算土被りとして以下の式(1)、 式(2)で導出することとした.式(3)に示すように、換算 土被りH₁、H₂のうち、小さい方の値H'と解析に用いた 地山の変形係数の組み合わせが、2つの指標を満足する 地山条件と考えられる.

$$H_1 = H_o \times \sigma_{ca} / \sigma_{rc} \tag{1}$$

$$H_2 = H_0 \times U_{ra} / U_r \tag{2}$$

$$H' = min(H_1, H_2) \tag{3}$$

ここに,

*H*₁ : 吹付け応力から求めた換算土被り(m)

- *H*₂ :壁面変位から求めた換算土被り(m)
- *H*_o :計算上の土被り(m)
- *σ_{ca}*: 吹付け圧縮強度 (N/mm²)
- σ_{rc} : 吹付け応力の解析値 (N/mm²)
- Uca :壁面変位の許容値 (mm)
- U_r :壁面変位の解析値 (mm)
- H':適用可能な土被り(m)

ここで,照査に用いる許容値について,トンネル壁面 変位は参考文献 ⁴より,掘削径の 5% (680mm)とし, 吹付け応力は圧縮強度としている.

表-2 解析ケース

解析	土被り	地山の 力学	変形 係数	粘着力 (N/mm2)	内部 摩擦角	木° アソン	吹付け	
.,_~	(11)	モデル	(N/mm²)	(11/ 10002 /	(°)	ц	種類	厚さ(cm)
CASE1	500	弾性	200	-	-	0.30	超高強度	20
CASE2	500	弾性	500	-	-	0.30	超高強度	20
CASE3	500	弾性	1000	-	-	0.30	超高強度	20
CASE4	500	弾 性	200	-	-	0.30	超高強度	30
CASE5	500	弾性	500	-	-	0.30	超高強度	30
CASE6	500	弾性	1000	-	-	0.30	超高強度	30
CASE7	500	弾塑性	200	0.3	35	0.30	超高強度	20
CASE8	500	弾塑性	500	0.5	40	0.30	超高強度	20
CASE9	500	弾塑性	1000	1.0	45	0.30	超高強度	20
CASE10	500	弾塑性	200	0.3	35	0.30	超高強度	30
CASE11	500	弾塑性	500	0.5	40	0.30	超高強度	30
CASE12	500	弾塑性	1000	1.0	45	0.30	超高強度	30
CASE13	500	弾塑性	200	0.3	35	0.30	従来型	30
CASE14	500	弾塑性	500	0.5	40	0.30	従来型	30
CASE15	500	淄朔性	1000	1.0	45	0.30	従事刑	30

(3) 検討結果

解析結果より得られた特性曲線を図-3~図-5 に示す. 地山特性曲線は、支保工背面の地山要素のトンネル半径 方向応力と壁面変位量の関係をプロットしたものである. また、支保特性曲線は、シェル要素のトンネル円周方向 応力を以下の式(4)⁹を用いてトンネル半径方向応力に換 算したものと、壁面変位量の関係をプロットしたもので ある. 圧縮強度の許容値も同様に式(4)から算出したも のである.

$$\sigma_{\theta c} = \frac{2a^2}{a^2 - a_i^2} \sigma_{rc} \tag{4}$$

ここに、 $\sigma_{\theta c}$: 吹付けのトンネル円周方向応力 (N/mm²) a : トンネル掘削面までの半径 (mm) a_i : 吹付け内側までの半径 (mm) σ_{rc} : 吹付けのトンネル半径方向応力 (N/mm²)

図-3 特性曲線(弾性と弾塑性の比較_吹付け厚さ20cm)

図-4 特性曲線(弾性と弾塑性の比較_吹付け厚さ30cm)

図-5 特性曲線(超高強度と従来型の比較_吹付け厚さ30cm)

これらの結果から、上述の方法を用いて換算土被りを 求めた結果の一例を図-6に、適用範囲を求めた結果を図 -7~図-8に示す.図-6は、図-5の結果を用いて換算土被 りを算定したものである.同図より、本検討で用いた許 容値を前提とした場合、 H_2 より H_1 の方が小さい値とな り、 H_1 から適用範囲が決定される結果となることがわ かる.ただし、図-6の超高強度の結果では、地山の変形 係数が200MPa以下の領域ではこの傾向が逆転し、 H_1 よ り H_2 の方が小さい値となると考えられる.

図-7 より,弾性解析と弾塑性解析のいずれについて も,吹付け厚さが大きくなるにつれ,適用範囲が拡大す る結果となり,弾性解析の方が,地山が良くなるにつれ, 適用範囲が大きくなる結果となる.弾性解析と弾塑性解 析の適用範囲を比較すると,地山の変形係数が低い領域 では弾塑性解析の方が大きく,地山の変形係数が高い領 域では弾性解析の方が大きい.例えば,図-3 の CASE1 と CASE7 を比較すると,弾性解析の場合,吹付けに発 生する応力が大きい分,壁面変位が抑制されている.

図-7 弾性と弾塑性の適用範囲比較

図-8 超高強度と従来型の適用範囲比較

一方で、弾塑性解析の場合、壁面変位が生じる分、吹付けに発生する応力が小さくなっている.その結果、吹付け応力が許容値を超過する割合は、弾塑性解析の方が小さくなっており、塑性化する地山であっても、適用範囲が大きくなる結果となる.このことは、地山を適度にいなすことが NATM の支保設計において有効であることを示唆していると考えられる.図-8 はともに弾塑性解析の結果であるが、同じ地山物性値で、超高強度と従来型を比較すると、超高強度の適用可能な土被りが従来型の約2倍となり、超高強度の優位性が示される結果となった.

(4) 吹付けの剛性発現の感度分析

以上の結果より,超高強度の適用範囲をさらに拡大さ せるための材料開発に関する考察を述べる.本検討の条 件では,地山の変形係数が200MPa以上の領域では,壁 面変位を積極的に許容し,いなし効果を保有させるよう な材料開発が有効であると考えられる.一方で,地山の 変形係数が200MPa以下の領域では,壁面変位を抑制す るような材料特性とすることが望ましく,対象とする地 山条件に応じた材料開発が必要であると考えられる.

以上の考察を検証するべく, 吹付けの剛性発現の感度 分析を行った. 表-2の CASEII において, 図-9 に示すよ うに, 剛性の最終値は同程度としながら, 最終値に至る までの発現を緩やかにさせた CASEII'の解析結果を図-10 示す.

図-9 感度分析に用いた吹付けの剛性発現

図-10 剛性発現の感度分析結果

図-10は、平衡点と適用範囲の変化を示したものである。平衡点はグラフ右下にシフトし、吹付け応力が低減したことを示している。適用可能な土被りは、50m程度上昇することとなる。ただし、感度分析に用いた材料特性は、示方配合における制約を考慮したものではなく、配合上の実現性を検討するのは、今後の課題としたい。

4. 超高強度の2次元解析への適用

(1) 2次元解析のパラメータ設定に関する課題

本検討では、2次元解析で用いるパラメータのうち、 応力解放率と吹付けの等価弾性係数に着目する.

2 次元解析では、トンネル掘削における切羽進行を模 擬するため、応力解放率の概念を用いる.しかし、応力 解放率は施工実績から経験的に定められる等の課題があ る⁹.また、超高強度と従来型のように、材料特性の異 なる吹付けコンクリートが施工される場合について、十 分な検討がなされていない.

吹付けの等価弾性係数は、打設直後からの剛性変化や クリープ変形を全て考慮した値^かが採用されることが多 いが、超高強度と従来型では、図-2 に示すように剛性 発現が異なるため、超高強度を 2 次元解析で扱う場合、 どのような値とすることが適切であるか、検討の余地が あると考える.これらの問題意識のもと、2 章で述べた 3 次元逐次掘削解析の結果を用いて、以下に示す方法で 検討を行った.

(2) 解析ケース

本検討で実施した解析ケースを表-3 に示す. 地山の 力学モデルは線形弾性体としている.

(3) 検討方法

a) 応力解放率

本検討では、図-11 に示すように、上述の3次元逐次 掘削解析の結果と円孔理論解から得られる特性曲線⁵か ら、以下の式(5)に示す先行解放率αを定義する.

解析 ケース	土被り (m)	地山の 力学	変形 係数	粘着力 (N/mm2)	内部 摩擦角	木 [°] アソン 比:	吹付け	
	(,	モテル	(N/mm ²)		(°)	1	種類	厚さ(cm)
CASE1	500	弾性	200	-	-	0.30	超高強度	20
CASE2	500	弾性	500	-	-	0.30	超高強度	20
CASE3	500	弾性	1000	-	-	0.30	超高強度	20
CASE4	500	弾性	200	-	-	0.30	超高強度	30
CASE5	500	弾性	500	-	-	0.30	超高強度	30
CASE6	500	弾性	1000	-	-	0.30	超高強度	30
CASE16	1000	弾性	200	-	-	0.30	超高強度	20
CASE17	1000	弾性	500	-	-	0.30	超高強度	20
CASE18	1000	弾性	1000	-	-	0.30	超高強度	20
CASE19	1000	弾性	200	-	-	0.30	超高強度	30
CASE20	1000	弾性	500	-	-	0.30	超高強度	30
CASE21	1000	弾性	1000	-	-	0.30	超高強度	30
CASE22	500	弾性	500	-	-	0.30	従来型	20
CASE23	500	弾性	500	-	-	0.30	従来型	30
CASE24	500	弾性	1000	-	-	0.30	従来型	20
CASE 25	500	214 至	1000	_	_	0.20	谷本刑	20

表-3 解析ケース

$$\alpha = \frac{P_0 - P_1}{P_0} \times 100 \tag{5}$$

ここに,

α :先行解放率(%)

P₀ : 着目点の初期地圧 (N/mm²)

P₁ : 着目点に支保設置時の地圧 (N/mm²)

また,既往研究[®]より,応力解放率と地山・支保の剛 性比に関係があると考えられることから,先行解放率α と以下の式(6)に示す地山・支保の剛性比K_s/K_gの関係を 解析ケースごとに整理し,応力解放率の設定に関する考 察を行う.

$$\frac{K_s}{K_g} = \frac{E_C \times t}{E_g \times a} \tag{6}$$

ここに,

 K_s :支保の剛性 (N/mm)

Kg : 地山の剛性 (N/mm)

 E_c : 吹付け硬化時の弾性係数 (N/mm²)

t : 吹付け厚さ (mm)

 E_g :地山の変形係数 (N/mm²)

a : トンネル掘削面までの半径 (mm)

b) 吹付けの等価弾性係数

本検討では、上述の3次元逐次掘削解析から得られた 支保特性曲線より、以下に示す関係式から*E*cを吹付け の等価弾性係数として、超高強度の等価弾性係数の設定 に関する考察を行う.

吹付け支保のリング剛性と支保内圧は、それぞれ以下の式(7)、式(8)によって表される⁹.

図-11 先行解放率の定義

$$K_c = \frac{E_c(a^2 - a_i^2)}{(1 + \nu)\{(1 - 2\nu)a^2 + a_i^2\}}$$
(7)

ここに,

K_c : 吹付け支保のリング剛性 (N/mm²)

 E_c : 吹付けの等価弾性係数 (N/mm²)

a :トンネル掘削面までの半径 (mm)

 a_i : 吹付け内側までの半径 (mm)

ν :ポアソン比 (=0.2)

$$\sigma_{rc} = K_c \frac{U_r}{a} \tag{8}$$

ここに,

K_c : 吹付け支保のリング剛性 (N/mm²)

U_r :壁面変位 (mm)

a :トンネル掘削面までの半径 (mm)

上式のうち, *E*_cのみが未知数となり, *K*_cは解析結果から求まる. その他の値は解析のインプットとなる.

(4) 検討結果

a) 応力解放率

図-12 に先行解放率 α と地山の変形係数 E_g の関係を示 す.図-12 より、吹付け厚さと剛性発現が同じであれば、 α と E_g の関係は、初期地圧(土被り)に依存しないこと がわかる.また、 E_g が高くなるにつれ、 α は大きくなる. これは、 E_g が高い領域では、支保剛性が地山剛性に対 して相対的に小さくなり、支保が α を小さくすることに 寄与しにくくなるためであると考えられる.また、 E_g が低い領域では、吹付け厚さが違うと α の差が大きくな る.これは、支保剛性が地山剛性に対して相対的に高く なるためであると考えられる.超高強度と従来型を同じ 条件で比較すると、先行解放率は超高強度の方が小さい.

したがって,超高強度を2次元解析で取り扱う場合, 先行解放率は,従来型より小さい値として設定すること が妥当であると考えられる.

図-12 先行解放率と地山の変形係数の関係

図-13 先行解放率と地山・支保の剛性比の関係

図-13 に $\alpha \ge K_s/K_g$ の関係を示す. 同図より, 弾性解析の場合, 吹付けの材料特性によらず, これらの関係は線形の近似式として表すことができる可能性を示唆している. したがって,本検討で用いたような単純化した条件であれば,予め,図-13 の直線を求めておけば, K_s/K_g の関係を変更した場合についても先行解放率を導出することができる可能性がある.

b) 吹付けの等価弾性係数

解析結果から求めた吹付け支保のリング剛性 K_c と上述の方法により求めた吹付けの等価弾性係数 E_c の結果を表4に示す.吹付け厚さが同じであれば、初期地圧

(土被り)や E_g によらず, K_c は同程度となる.また, E_c は、吹付けの材料特性が同じであれば、いずれのケースについても同程度となる.従来型の E_c は、参考文献ので示される値(3.4GPa)より大きい値となるが、本検討では、1ステップで全周を閉合していること等が影響しているものと考えられる.超高強度と従来型を比較すると、超高強度の等価弾性係数の方が従来型より2倍程度大きい.

したがって,超高強度を2次元解析で取り扱う場合, 吹付けの等価弾性係数は、従来型より大きい値として設 定することが適切であると考えられる.また、本検討で 用いたような単純化した条件であれば、ある材料特性を 持つ吹付けの等価弾性係数を予め求めておくことで、地 山条件や吹付け厚さを変更した場合についても、吹付け の等価弾性係数は同じ値として設定しても良い可能性が ある.

(4) 3次元解析と2次元解析の比較

ここまでの検討で得られた応力解放率と吹付けの等価 弾性係数に関する知見を基に,3次元解析と2次元解析 の特性曲線を比較した結果の一例を図-14に示す.

表4 吹付けのリング剛性と等価弾性係数の算定結果

解析 ケース	土被り (m)	地山の 力学 モデル	変形 係数 (N/mm ²)	吹f 種類	すけ 厚さ(cm)	Kc (N/mm²)	Ec (N/mm²)	
CASE1	500	弾性	200	超高強度	20	435.3	13.9	
CASE2	500	弾性	500	超高強度	20	424.6	13.6	
CASE3	500	弾性	1000	超高強度	20	428.5	13.7	
CASE4	500	弾性	200	超高強度	30	674.1	14.2	
CASE5	500	弾性	500	超高強度	30	633.3	13.3	
CASE6	500	弾性	1000	超高強度	30	633.9	13.3	
CASE16	1000	弹性	200	超高強度	20	433.2	13.8	
CASE17	1000	弾 性	500	超高強度	20	423.3	13.5	
CASE18	1000	弾 性	1000	超高強度	20	428.6	13.7	
CASE19	1000	弾 性	200	超高強度	30	672.3	14.2	
CASE20	1000	弾 性	500	超高強度	30	634.1	13.3	
CASE21	1000	弾性	1000	超高強度	30	632.6	13.3	
CASE22	500	弾性	500	従来型	20	243.7	7.8	
CASE23	500	弾性	500	従来型	30	346.7	7.3	
CASE24	500	弾性	1000	従来型	20	258.9	8.3	
CASE25	500	弾性	1000	従来型	30	372.2	7.8	
半径方向応力の「(MPa) 10 2 0 0 0 0 0	200 壁面 3 一 CASE1 吹作	400 60 変位Ur, (mm) けけ (3次元解		半径方向応力のr (MPa) 10 1 10 0 0 0 0 0	200 建面3 - CASE23 吹	400 60 を位Ur,(mm) けけ(3次元船	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
-0		山(3次元解析))	 ——— CASE23 地山(3次元解析) ● 2次元解析 				

図-14 3次元解析と2次元解析の比較(CASE1, CASE23)

吹付けの等価弾性係数は**表**4 より,各吹付けの平均 値としている.2次元解析で3次元解析の結果を概ね再 現できており,本検討で用いたような単純化した条件で あれば,2次元解析による効率的な設計ができる可能性 が示されたと考える.

5. まとめ

本稿では、吹付けコンクリートの剛性発現を考慮した 3次元逐次掘削解析に基づき、超高強度吹付けコンクリ ートの適用範囲を検討した.また、同解析結果を理論式 を用いて整理することで、超高強度吹付けコンクリート を2次元解析で扱う場合の応力解放率と吹付けの等価弾 性係数について、考察を行った.

得られた結論を以下に示す.

- 土被りと地山物性値が同じ条件であれば、超高強 度の適用範囲は吹付け厚さに応じて拡大する.
- トンネル安定性の評価指標をトンネル壁面変位お よび吹付け応力とした場合、本検討の許容値を前 提とすれば、適用範囲は吹付け応力によって決定 される。
- 地山物性値と地山の力学モデルが同じであれば、 超高強度が適用可能となる土被りは、従来型より

大きな値となる.

- 4) 本検討の許容値を前提とすれば、超高強度の剛性 発現を緩やかにし、トンネル壁面変位を積極的に 許容した場合、吹付け応力が低減され、適用範囲 が拡大する.
- 5) 弾性解析であれば、他の条件が同じであれば、先 行解放率は土被り(初期地圧)に依存しない.
- 6) 弾性解析であれば、支保の剛性が地山の剛性に対して相対的に大きい領域では、先行解放率が小さくなり、吹付け厚さの違いによる差が大きくなる.
- 超高強度と従来型を同じ条件で比較すると、超高 強度の先行解放率は、従来型と比較して小さくな る.
- 8) 弾性解析であれば、吹付けの材料特性によらず、 応力解放率と地山・支保の剛性比が線形の近似式 として表すことができる可能性がある.
- 9) 弾性解析であれば、剛性発現と厚さが同じ吹付けのリング剛性は、初期地圧(土被り)や地山の変形係数によらず、同程度の値となる.
- 10) 弾性解析であれば、剛性発現が同じ吹付けの等価 弾性係数は同程度の値となる.
- 11) 超高強度の等価弾性係数は、従来型の等価弾性係 数より大きな値となる.

本稿では、単純化した条件において解析を行い、そこ から得られた結果をいくつかの仮定の基に整理し、その 傾向を把握した.例えば、トンネル壁面変位の許容値は、 Fenner-Paher 曲線⁴において、ゆるみ領域が生じない限界 の値を想定したものであるが、この値は、解析等で明確 な値を導き出すのが困難なものであり⁹、検討の余地が あるものと考えている.また、適用範囲を求める際に、 平衡点における解析値を用いているが、着目断面から切 羽が十分に離れておらず、吹付けの強度が十分に発現していない段階についても検討の余地があると考えている.

今後は、掘削工法やトンネル断面形状を実施工に即したものへ変更した場合の検討や施工データとの比較にも取り組んでいきたい.

参考文献

- H.Takeda, T.Kawaguchi, H.Yoshimoto, S.Fujiwara, K.Sato: Material properties and construction performance of ultra-high strength sprayed concrete, ITA WTC 2019 Congress and 45th general assembly, pp3162-3171, 2019
- 川口哲生,吉本宏和,武田均:超高強度材の極若材 齢における圧縮強度とヤング係数の発現性に関する 研究,第73回土木学会年次学術講演会,V-254, pp507-508,2018
- 3) 公益社団法人 日本コンクリート工学協会:マスコ ンクリートのひび割れ制御指針, pp. 43-44, 2016.11
- 4) 今田徹:山岳トンネル設計の考え方, p.28, 2000.10
- 5) E.フック, E.T.ブラウン(小野寺透, 吉中龍之進, 斉藤正忠, 北川隆 共訳): 岩盤地下空洞の設計と
- 施工,土木工学社,1985.2 6) 独立行政法人 鉄道建設・運輸施設整備支援機構: 山岳トンネル設計施工標準・同解説,2008.4
- 7) 土屋敬:トンネル設計のための支保と地山物性値に 関する研究,土木学会論文集,Ⅲ-4, pp31-40, 1985
- 8) 市田雄行、小原伸高:トンネルの2次元掘削解析における応力解放率に関する一考察、トンネル工学報告集、第25巻、I-31、2015.11
- 9) 福島啓一:わかりやすいトンネルの力学, p. 23, 1994.9

(2019.8.9 受付)

APPLICABILITY STUDY OF ULTRA-HIGH STRENGTH SHOTCRETE FOR A HIGH OVERBURDEN AND STUDY OF NUMERICAL ANALYSIS METHOD

Yuki YOKOHATA, Isamu OTSUKA, Ken ITAGAKI and Ryo KAGEYAMA

When a tunnel is excavated in a poor ground at large overburden, double support system or drift advancing method have been adopted as countermeasures against large scale deformation. Ultra-high strength shotcrete under development at our company has high compressive strength of approximately 100 N/mm² at 28 days, and it may be possible to shorten the construction period and reduce the construction cost compared to conventional measures. In this paper, we first show the results of examining the application range of ultra-high strength shotcrete based on the results of three-dimensional excavation analysis that takes into account the development of concrete stiffness. Next, based on this analysis result, the results of the stress release rate and the equivalent elastic modulus of shotcrete are shown when ultra-high strength shotcrete is handled in a two-dimensional analysis.