移動体レーザスキャニングによる トンネル覆工の形状計測

平野 紘司1・後藤 和夫2・三ツ谷 洋司3・遠藤 太嘉志4・佐野 信夫5 大窪 克己6

¹正会員 中日本ハイウェイ・エンジニアリング東京(株) 土木技術部 (〒160-0023 東京都新宿区西新宿1-23-7) E-mail:k.hirano.aa@c-nexco-het.jp

²(有)ジーテック システム開発部 (〒950-0854 新潟県新潟市東区南紫竹2-7-16) E-mail:k.goto@gtec-ni.com

³リアルドットワールド(株)(〒227-0062 神奈川県横浜市青葉区青葉台1-11-4) E-mail:mitsuya@realdotworld.com

⁴正会員 (株)地層科学研究所 土木設計・計測事業グループ (〒242-0017 神奈川県大和市大和東3-1-6) E-mail:endo@geolab.jp

> 5正会員 (株)アジア共同設計コンサルタント コンサルタント事業本部 (〒102-0083 東京都千代田区麹町1-10-5)

> > E-mail:n-sano@aec-inc.jp

 6正会員 中日本ハイウェイ・エンジニアリング東京(株) 土木技術部 (〒160-0023 東京都新宿区西新宿1-23-7)
E-mail:k.ohkubo.ab@c-nexco-het.jp

ひびわれが観察されたトンネル覆工の補修・補強を合理的に行う上で,覆工のひびわれの原因を特定す ることは重要である.ひびわれの原因を推定するための手段として,交通規制を伴わない移動体からのレ ーザスキャニングによる覆工の内空断面形状計測技術に注目した.筆者らは,レーザスキャナのデータ取 得速度と計測精度の向上を図るためにレーザスキャナの機種や設置角度を変更するなど改良を図ってきた. 本研究では,移動体からのレーザスキャニング計測の測距精度および覆工の内空断面形状を2回計測し た結果の差分について報告する.また,移動体からのレーザスキャニング計測によって得られた点群デー タの分析手法および内空断面形状計測結果の適用性について検討結果を報告する.

Key Words : concrete lining, cracks, lining shape measurement, MMS, laser scanning

1. はじめに

トンネル覆工の変状原因には、外力が作用するものと 環境や使用材料、施工等の外力以外によるものに大別で きる.変状現象のうち、ひびわれに着目すると、同じ規 模のひびわれであっても、その原因によって対策内容が 大きく異なると考えられる.そのため、変状原因を推定 できる手法が望まれている.

ひびわれは外力の作用だけでなく,覆工耐荷力の不足, 覆工材や補修・補強材の材質劣化によっても発生するこ とがあり,それぞれの変状原因が複合することもある. そのため,ひびわれの形態はさまざまである.このこと が、ひびわれの状況から単純に変状原因を推定すること を難しくしている¹⁾.

道路トンネルでは、平成 25 年に道路法が改正され、 道路法施行規則により、近接目視により、5年に1回の 頻度で行うことを基本とした定期点検を実施することに なった. 点検により変状発生が明らかになることで、調 査が実施され、対策を検討する案件が増えてきている.

ひびわれの原因調査としては、ひびわれ形態の分析の ほか、2回実施された定期点検結果の比較や亀裂変位計 による進行性の確認、および地質状況や地下水位から土 圧・水圧作用の可能性を推定する手法などが一般的であ る.しかし、これらの結果だけでは外力の作用を判断す ることは難しいのが実情である.一方,点検で得られた ひびわれ情報から TCI(Tunnel-Lining Crack Index)を用い て変状原因を推定する手法が検討されているが,この手 法単独で変状原因を推定できる場合とできない場合があ る².

ひびわれの原因として外力作用の有無を区分する指標 として、外力作用におけるトンネル内空断面の変形に着 目した.断面変形を把握するうえでは、内空断面をコン バージェンスメジャーによる測量や反射プリズムを用い た光波測距儀、トンネル断面測定器などで内空断面を計 測する方法がある.最近では、交通規制を伴わずに、内 空断面形状の把握が可能な移動体レーザスキャニングに よる計測が実用レベルで活用されている 2,3,4,5).

本報告では、交通規制を伴わない移動体レーザスキャ ニングによる計測を採用することとし、移動体レーザス キャニングについて、計測精度および再現性を確認した. また、計測によって得られた点群データの処理方法およ びひびわれ原因の推定方法について検討した.

2. 移動体レーザスキャニングの計測精度

(1) レーザスキャニング装置の改良

ひびわれの発生原因を特定するためのトンネル覆工の 形状計測では,mm単位の計測精度が必要になる.

計測には、三菱電機㈱製のMMS(Mobile Mapping System) を用いた(図-1(a)). レーザスキャナは既設のものにZ+F 社製のProfiler9012を増設した. その結果,レーザスキャ ナの精度誤差は10mmから0.5mm,データ取得速度は 13,575 pixel/secから1,016,000pixel/sec(最大),回転速度は 75Hzから200Hzに向上した.また、レーザスキャナの設 置角度を斜め45°照射から垂直照射に変更し,覆工壁面 に直交したスキャンをできるようにし、壁面に照射され るレーザビーム径の大きさによる誤差を最小化した(図-1(b)).

(2) 計測精度の検証

レーザスキャニング装置の改良により距離計測精度が 向上したことを路上走行実験により検証した.また,計 測の再現性の確認をトンネル走行実験により検証した.

a) 計測精度の検証⁶⁾

計測装置の改良により実際に距離計測精度が向上した ことを,路上走行実験により検証した.検証は,厚さの 異なる板をスキャニングし,板の厚さが正しく計測でき るかを確認する方法とした.計測対象として,1mm, 2mm,3mm,5mm厚のアクリル板(縦45cm×横30cm)を貼 り付けた合板を製作し,歩道上に設置した(図-2(a)).こ れを車道から移動体スキャニング計測(図-2(b))し,点群

(b) 計測状況(歩道にアクリル板・合板設置)

図-2 路上走行実験

を得た. 走行速度は20km/hとした.

得られた点群より合板の法線を求め、これをZ軸とし て、アクリル板の四辺に沿ってアクリル板に最も近い合 板上の点群を任意に選択し、各辺のZ座標の平均値を求 めた.また、同様にアクリル板上の合板に最も近い点群 を選び、各辺のZ座標の平均値を求めた.そして、両者 の差を取り、アクリル板の厚さの計測値とした.

計測結果を,表-1に示す.なお,表中の対象点群数が 任意に選択した点群数である.計測誤差は,点番号3と 4(アクリル板厚5mm),点番号19と20(アクリル板厚2mm) では,誤差がそれぞれ0.53mm,0.76mmとなるが,それ 以外の測点では0.5mm程度の誤差範囲で計測されている ことがわかる.なお,レーザスキャナ(Z+F社製Profiler 9012)の公表精度は距離2m,5mの場合0.5mm,0.4mm(壁 面Grey,標準偏差)である.

既往の精度検証⁷(レーザスキャナーから3mと6m離れた位置に厚さ12mm程度の合板を設置し、合板の有り無しの境で2箇所の変化を合板厚とする計測を、時速10km/hと20km/h走行で実施)では、誤差は概ね±1.0mm以

			-
点番号	Z座標	厚さ	対象 占群数
	(板の法線方向)	(Z座標の差)	
	m	mm	ጠባ ተ
アクリル板厚 5mm			
1	0.00220	4.69	76
2	0.00689		74
3	-0.00133	5.53	19
4	0.00420		15
5	-0.00014	5.04	77
6	0.00490		77
7	0.00099	5.20	20
8	0.00619		14
アクリル板	厚 3mm		
9	0.00216	3.48	78
10	0.00564		75
11	0.00094	3.44	26
12	0.00438		20
13	0.00171	3.39	79
14	0.00510		76
15	0.00183	3.29	22
16	0.00512		19
アクリル板厚 2mm			
17	0.00333	1.87	76
18	0.00520		74
19	0.00223	1.24	23
20	0.00347		22
21	0.00402	2.23	70
22	0.00625		70
23	0.00210	2.44	20
24	0.00454		30
アクリル板	厚 1mm		
25	0.00276	1.33	72
26	0.00409		70
27	0.00310	0.91	21
28	0.00401		28
29	0.00265	0.94	76
30	0.00359		76
31	0.00130	1.25	18
32	0.00255		10

表-1 厚さ計測の結果

内に分布すると報告されており、誤差は同程度であった.

b) 計測の再現性の検証

検証は、同じトンネルを移動体レーザスキャニングに よって2回計測し、その2回の計測値の差分が小さいこと を確認する方法とした.しかし、つぎの理由から同一位 置を2回計測するのは困難である.

移動体レーザスキャニング計測は、①レーザスキャナ 位置とトンネル壁面の距離および②走行速度により照射 されるレーザの点間隔が異なる.今回使用しているレー ザスキャナは、データ取得速度が1,016,000pixel/sec(最大)、 回転速度が200Hzであるので、1回転あたり5,080 pixelのレ ーザを照射する.そのため、レーザスキャナから4.6m離 れた箇所では、周方向に5.7mm程度の間隔でレーザの点 を取得することになる.また、トンネル縦断方向の照射 間隔は、時速70kmhの場合97.2mmとなる.その間隔は移 動体の走行速度に比例して変わる.そして、移動体から 照射されたレーザの点は、トンネル軸方向に対して螺旋 状に分布することになる(図-3).このようなことから、 定点を経時的に2回計測する場合、レーザの照射を同一 点に当てることは難しく、同一点の計測は困難である.

そこで、同一区間を2回計測し近似的に比較すること とした.

まずトンネル覆工のスパン長に応じて1スパンあたり3 ~5断面設定し、各断面に最も近い1回転分の点群をそれ ぞれ抽出する.つぎに第3章で述べる構造物中心の設定 (図-6)および測線長の取り方(図-7)の方法により、構造物 中心から各測点までの測線長を算出する.ただし、各測 点の位置は、第3章とは異なり、円の上側180°範囲を中 心角15°ピッチに12分割して設定した.このような作業 を同一区間を2回計測して、2回の測線長の差分を算出す ることにした.

走行実験したトンネルは,1997年(平成9年)に供用した NATMで施工された延長4,320mの2車線トンネルである. 走行速度68km/hで,2回計測した.

図-4は、2回行った計測における測線長の差分データ

図-3 移動体から計測した三次元点群データの螺旋分布

の頻度分布図である.2回の計測値の差分は正規分布に 近似し、標準偏差は1.1336mmであり、計測値が平均値 $\mu \pm 2 \times 標準偏差 \sigma = -0.213 \pm 2 \times 1.1336 \Rightarrow 2mm$ の範囲に入 る確率は約95%になることがわかった.

(3) レーザ点群データの分析方針

レーザスキャニング計測で得られる点群データは、三 次元の座標データである.このデータを用いてトンネル の変形状態を判断する方法として、新都市社会技術融合 創造研究会の方法[®]は、基準となる推定出来形断面を設 定し、その断面に対して点群データがどのような位置に あるかをコンターで示し、面的に視覚化している.

一方,前節(2)の路上走行実験の結果から,移動体レ ーザスキャニングによる距離計測は0.5mm程度の誤差範 囲であったことより,トンネル断面形状計測に対して十 分な精度があるものと判断される.また,実トンネルに おいて連続して2回断面形状を計測し,そのデータの差 分を分析した結果より,厳密に同一地点での計測データ の取得はできないが,定点に対して周方向5~10mm,軸 方向100mm程度の範囲内であれば標準偏差1.1mm程度の

図-4 1回目と2回目の計測結果の差分の頻度分布

精度で再現性のあるデータが取得できることがわかった. そこで、本報告では、螺旋状に分布する点群データから 1回転分のデータを取り出し、線的に視覚化し、トンネ ルの内空断面形状を評価することとした.

3. 内空断面分析手法

トンネル覆工の施工当初の内空断面形状は不明である. しかし、トンネル覆工は同じ型枠(セントル)を使って 施工しており、外力等が作用しないならば、施工誤差の 範囲内で同一形状を示すと考えられる.そこで、1スパ ンを図-5に示すように複数の断面に分割し、その断面の 中心点から覆工表面までの測線長を求め比較したり、各 断面を重ね合わせることで変形モードを比較することで、 各スパンにおける変状の有無を確認することとした.

(1) マクロ分析

マクロ分析は、各スパンの変状の有無を確認すること を目的とする.具体的には、スパン長 8.4m(鋼製型枠 長 さ 1.2m×7 枚=8.4m)の場合には、鋼製型枠の長さ 1.2mの 中央に計測断面を設け、スパン内に7断面設定する.

構造物中心は、トンネル標準断面が単心円の場合に は、計測断面の1回転分の点群データをもとに、天端か ら肩付近までの各測点(⑥~⑨~⑫)を通る内接円を描 き、仮想の構造物中心を設定する方法とし(図-6),構 造物中心から各測点までの測線長を算出する(図-7). なお、各測点の位置は、建築限界の高さを参考に設定し た.つぎに測線長から水平長や垂直長等を算出し(図-8),1スパン内の複数断面の平均値を算出する.

マクロ分析(1)は、各スパンの水平長や垂直長の平均 値が、トンネル全体の水平長や垂直長の平均値 μ と標準 偏差 σ に対して、 $\mu \pm \sigma$ の範囲内にあるか確認し、その 範囲外にある場合には、次に述べるミクロ分析の対象ス

図-6 構造物中心の設定

図-8 水平長・垂直長の取り方

図-7 測線長の取り方

図-10 測線長

図-9 マクロ分析(1)

パンとしている (図-9).

マクロ分析(2)は、スパン内の測線長のばらつきおよび水平長・垂直長の設計値に対するばらつきから、各スパンの内空断面の変形の有無を確認し、変形が外力なのかそれ以外なのかの判断材料とする(図-10,図-11,図-12).

(2) ミクロ分析

ミクロ分析は、各々のスパン毎に基準を作成し、その 基準と各測線の比較を行い、スパン内の局所的な変形の 有無を確認することを目的とする.

図-13の見透かしは、スパン内で取得した複数断面の うち、1断面目を基準とし、トンネル内空断面を見透か すことにより、スパン内の各断面の形状を比較し、スパ ン内の変形モードの異常値の有無を確認するものである. なお、見透かし図は5倍強調したものを表示する.

図-14 の横断線形は、1 断面目を基準とし、スパン内 で取得した螺旋状に分布する点群全体を上面から見下ろ し、左右の内空断面位置のずれの最大値を図示し、横断 線形の異常値の有無を確認するものである. なお、図中

図-11 水平長

の数字は、1断面と7断面の差である.

図-15の縦断線形は、1断面目を基準とし、スパン内で 取得した螺旋状に分布する点群全体を側面から見て、天 端の内空断面位置のずれの最大値を図示し、縦断線形の 異常値の有無を確認するものである.なお、図中の数字 は、1断面と7断面の差である.

図-16 の重ね合わせは、スパン内の各断面の構造物中 心の重ね合わせを行うことにより、各断面の形状を比較 し、スパン内の変形モードの異常値の有無を確認するも のである.なお、重ね合わせ図は5倍強調したものを表

図-12 垂直長

図-14 横断線形

図-16 重ね合わせ (5倍強調)

図-20 支保パターン (Dパターン)

示する.

鋼製型枠を使用したセントルでは、使用を繰り返して いる間に鋼製型枠がずれたり、変形したりすることがあ る.このようなセントルの変形の有無を確認するために、 トンネル全スパンの平均内空断面を設定し(図-17)、図-18ではその平均内空断面とスパン内の複数断面を重ね合 わせことにより、図-13~16により抽出された変状が懸 念されるスパンとの差異を確認するものである.

4. 移動体レーザスキャニング計測の適用性検討

覆工コンクリート表面に発生しているひびわれおよび 地形・地質条件などから、外力性変状の可能性のあるト ンネルについて、移動体レーザスキャニングによる計測 を実施し、前章の内空断面分析手法を適用し、ひびわれ と内空断面変形の相関性について検討を行う.

(1) 覆エコンクリート変状状況

対象トンネルは、1968年(昭和43年)に供用された矢板 工法で施工された二車線トンネル(上半内空半径

図-21 ひびわれ展開図

図-22 ひびわれ展開図 (3D)

R=5,170mm)の上り線である.本報告で対象とする区間 の地形図(図-19)と支保パターン(図-20)を示す.対象区 間は傾斜地盤上に位置しており,偏圧が懸念される.

図-21,図-22に対象区間のひびわれ展開図を示す.ひ びわれ展開図にはひびわれのほか,内装板と導水樋も記 入している.詳細点検の結果から,覆エコンクリート表 面には、スパン全体にわたり、幅の小さなひびわれが天 端縦断方向に2条発生しており、それに加えて、山側の 肩部付近に幅1.5~3.5mm程度のひびわれがスパンを跨い で縦断方向に発生していることがわかる.

(2) ひびわれと断面変形の相関検証

図-23に対象区間の点群データを示す.内空断面分析 手法を適用し、マクロ分析およびミクロ分析を実施した. 図-24に点群データの変形モードにひびわれ展開図を重 ね合わせた図を示す.左右の側壁部付近の変形は、内装 板や導水樋が干渉したことが原因と考えられる.

また,天端部の凸状の変形は,図-15に示した縦断線 形の確認をしたところ異常なバラつき等は見受けられな いことから,バラセントルの構造によるものであると推 察される.

一方、山側の肩部付近の変形は、ひびわれ展開図の山 側において縦断方向の幅1.5~3.5mm程度のひびわれが発 生している箇所と一致する.したがって、ひびわれ展開 図の山側のひびわれは、外力に起因するひびわれである 可能性がある.

また,スパン全体にわたり天端縦断方向に2条発生し ている幅の小さなひびわれは,変形モードには表れてい ない.矢板工法で施工されたトンネルのうち内因による ひびわれが発生しているトンネルは,スパン全体にわた り,幅の小さなひびわれが天端縦断方向に2条発生する 傾向にある¹⁰ことから,内因に起因するひびわれである 可能性がある.

5. まとめ

路上走行計測の結果から,移動体レーザスキャニング による距離計測は0.5mm程度の誤差範囲であったことよ り、トンネルの内空断面の形状計測に対して十分な精度 があるものと判断される.

実トンネルにおいて内空断面の形状を連続して2回計 測し、そのデータの差分を分析した結果より、厳密に同 一地点での計測データの取得はできないが、定点に対し て周方向 5~10mm、軸方向 100mm 程度の範囲内であれ ば標準偏差1.1mm程度の精度で再現性のあるデータが取 得できる.

図-23 点群データ

図-24 変形モード (重ね合わせ)

レーザスキャニング計測で得られる螺旋状に分布する 点群データから1回転分のデータを取り出し,線的に視 覚化し,トンネルの内空断面の形状を分析する手法を検 討した.

偏圧による外力性変状の可能性のあるトンネルにおい て、移動体レーザスキャニングによる計測を実施し、内 空断面分析手法を適用した結果、ひびわれと内空断面の 変形に相関性のあるスパンが確認できた.

トンネルの内空断面を把握するには、移動体レーザス キャニングによる計測(MMS)が有効である.内空断面 の特異な変形を把握することにより、外力等の影響を推 定することができる.

謝辞:本研究の移動体レーザスキャニングの計測精度の 検証にあたり,菅原健太郎博士には貴重な助言を頂きま した.ここに記して深甚の謝意を表します.

参考文献

- 日本道路協会:道路トンネル維持管理便覧【本体工編】, pp.37, 2015.
- 水野希典,前田佳克,海瀬忍,前田洸樹,重田佳幸,松 岡茂,西村和夫:既設トンネル覆工の変状原因推定手法 に関する検討,土木学会論文集 FI(トンネル工学), Vol.73, No.3(特集号), L1-1_9, 2017.
- 3) 谷川征嗣,安田亨,田近宏則,石田智朗:変状トンネル

における新たな調査手法に関する検討,トンネル工学報 告集,第20巻, I-35, pp.245-250, 2010.

- 4) 菅原健太郎,大窪克己,土門剛,三ツ谷洋司,蒋宇 静:矢板工法で建設されたトンネルの移動体レーザスキ ャニングによる覆工形状計測,土木学会論文集 Fl(トンネ ル工学), Vol.72, No.3(特集号), I_74-I_86, 2016.
- 5) 重田佳幸,前田佳克,水野希典,海瀬忍,前田洸樹,山 本秀樹,安田亨:走行型計測による既設トンネル覆工の 外力変状評価,トンネル工学報告集,第 26 巻, I-21, 2016.
- 6) 菅原健太郎:矢板工法で建設されたトンネル覆工のひび われ発生メカニズムに関する研究,長崎大学学位論文, pp.128-137,2017.
- 7) 重田佳幸,寺戸秀和,前田洸樹,山本秀樹,安田亨:トンネル走行型レーザー計測技術の精度検証,トンネル工学報告集,第27巻,I-4,2017.
- 8) 水口尚司,大西有三,西山哲,西川啓一,下澤正道, 石村勝伸:道路トンネルにおける画像及びレーザデータ を用いたマネジメント手法の研究,土木学会論文集 F2(地 下空間研究), Vol.71, No.1, pp.20-30, 2015.
- 9) 新都市社会技術融合創造研究会 走行型計測技術による道路トンネル健全性評価の実用化研究プロジェクト: 走行型計測技術による道路トンネル健全性評価の実用化研究 研究成果報告書, pp2-8~5-11, 2013.
- 10)前田佳克,八木弘,海瀬忍,増田弘明,水野希典,重田 佳幸,前田洸樹:ひびわれ指数(TCI)を用いた覆工に発生 するひびわれ形態の整理,トンネル工学報告集,第26巻, I-30,2016.

(2018.8.10受付)

SHAPE MEASUREMENT OF TNNEL LINING BY MOBILE LASER SCANNING

Koji HIRANO, Kazuo GOTO, Yoji MITSUYA, Takashi ENDO, Nobuo SANO and Katsumi OKUBO

It is important to identify the cause of cracks to rationally repair and reinforce the tunnel lining where cracks were observed. As a means to estimate the cause of cracks, the authors focused on shape measuring technology of tunnel lining by mobile laser scanning without traffic regulation. In order to improve the data acquisition rate and measurement accuracy of the laser scanner, we improved such as changing the model and the installation angle of the laser scanner.

In this paper, we reported on the accuracy of distance measurement in road running test and the difference between two measurements of tunnel cross section. In addition, we reported on the results of the analysis of data obtained by mobile laser scanning and the applicability of cross section measurement results.