超大断面部における覆エコンクリートの 温度ひび割れ対策効果の検証

赤池 考起¹·稻田 匠吾²・白岩 誠史³・田口 敬二⁴・古原 正人5 1正会員 (株)安藤・間 本店 土木事業本部 土木設計部 (〒107-8658 東京都港区赤坂6-1-20) E-mail:akaike.koki@ad-hzm.co.jp 2正会員 (株)安藤・間 本店 土木事業本部 技術第三部 (〒107-8658 東京都港区赤坂6-1-20) E-mail:inada.shogo@ad-hzm.co.jp 3正会員 (株)安藤・間 本店 土木事業本部 土木設計部 (〒107-8658 東京都港区赤坂6-1-20) E-mail: shiraiwa.seishi@ad-hzm.co.jp 4国土交通省 九州地方整備局 大分河川国道事務所 (〒870-0820 大分県大分市西大道1-1-71) E-mail:taguchi-k8910@qsr.mlit.go.jp 5国土交诵省 九州地方整備局 大分河川国道事務所(〒870-0820大分県大分市西大道1-1-71) E-mail:kohara-m8910@qsr.mlit.go.jp

「大分212号三光第1号トンネル新設工事」の起点側は、内空断面積139m²の超大断面部である. 当該部 の覆エコンクリート厚は60cmであることから、インバートの拘束により、覆エコンクリート側壁部に温度 ひび割れの発生が懸念された. その対策として、温度ひび割れ抑制対策のひとつである"部分パイプクー リング工法(Localized Pipe Cooling)"を採用した.

本報告では部分パイプクーリングの実施状況を報告するとともに、ひび割れ抑制効果確認のため、部分 パイプクーリングと無対策の比較およびひび割れ抑制鉄筋による対策との効果を比較した. コンクリート 温度、拘束ひずみの計測結果から、部分パイプクーリングのひび割れ抑制効果が高いことが確認できた.

Key Words : tunnel concrete lining , very large cross section tunnel , pipe cooling , crack-controlling rebar , temperature crack

1. はじめに

「大分212号三光第1号トンネル新設工事」(以下,本 現場)は、三光本耶馬渓道路に計画された「(仮称)三 光第1号トンネル」を新設する工事である。三光本耶馬 渓道路は、図-1に示すように中津日田道路の一部を構成 する延長12.8kmの自動車専用道路で、このうち6.3kmは トンネル構造物である。本道路は、完成二車線の剛性中 央分離帯となっており、幅員が12.0mである。本現場の トンネルは、標準部内空断面積が92m²となっており、ト ンネル起点側坑外にはインターチェンジがあり、坑口よ り約172mの区間でランプの幅員を確保することになる ため、内空断面積が139m²の超大断面となる。超大断面 部における覆エコンクリートの厚さは60cmであり、下 端がインバートに拘束されることで、覆工側壁部のブロ ック中央に水和熱に起因するトンネル輪切り方向の温度 ひび割れの発生が懸念される。

本報告では、超大断面部におけるひひ割れ抑制対策と

して、部分パイプクーリング(Localized Pipe Cooling)と ひび割れ抑制鉄筋を適用し、その効果を比較した.

2. ひび割れ対策の事前照査

(1) ひび割れ照査フロー

超大断面部の覆工厚は60cmであり、コンクリート標

準示方書 [施工編] によれば、下端が拘束された壁では 厚さ50cm以上をマスコンクリートとして扱い、セメン トの水和熱に起因する温度ひび割れの照査をすることと している、そのため、図-2に示すフロー図に従い、三次 元FEM温度応力解析によるひび割れの照査を実施した.

(2) 三次元FEM温度応力解析による照査

a) 解析モデル,条件

解析に使用したモデルは、トンネル断面を2分割し、 覆工1ブロック(L=6.0m)を中央で2分割した1/4モデル とした(図-3参照).解析に使用した条件として、熱伝 達率の設定を表-1、覆工、インバートコンクリートの配 合を表-2, コンクリート, 地盤の熱的・力学的特性の一 覧を表-3, 打設スケジュール, 外気温, コンクリート温 度の設定を表-4に示す、外気温は大分県中津市の2011年 から2016年における月毎平均気温から設定し、打ち込み 時のコンクリート温度は日平均気温+5℃に設定した. 外気温は、超大断面打設時は既に貫通しているため、坑 内温度と外気温は等しいとした.

b) 事前解析結果

無対策時の解析結果を図-4に示す.

解析の結果、ブロック中央部の側壁下部において、縦 断方向の引張応力が卓越し、最小ひび割れ指数が0.91で、 1.0を下回る結果となり、ひび割れの発生する確率が高 いことが確認できた.

図-2 温度ひび割れ照査フロー図1)

表-1	解析`	で使用	した熱	伝道	斡	Ś
-----	-----	-----	-----	----	---	---

項目	養生期間 (日)	養生中熱伝達率 (W/m ² ℃)	撤去後熱伝達率 (W/m ² ℃)
外気	-	14	14
メタルフォーム	1	14(鋼製型枠)	14
褄板	1	8(木製型枠)	14

c) 温度ひび割れ対策工の選定

事前解析の結果より、 側壁部に温度ひび割れの発生が 懸念されるため部分パイプクーリングを対策工法として 採用した.表-5は、日本コンクリート工学会発行の"マ

表-2 コンクリート配合

	W/C	s/9		単位	位量(kg/m	n ³)	
項目	(%)	(%)	水	セメント	細骨材	粗骨材	混和材
			w	Ľ	3	G	Ad
アーチ部	163	18.8	175	378	810	011	3 024
(30-18-20BB)	40.5	40.0	175	570	01)	711	5.024
インバート部	47.0	377	148	315	694	1183	3 1 5 0
(30-8-40BB)	77.0	51.1	140	515	0)4	1105	5.150

表-3 熱的・力学特性一覧

物性値	単位	<u>アーチ部</u> 高炉セメントB種 (30-18-20BB) ※1	インバート部 高炉セメントB種 (30-8-40BB) ※1	吹付け コンクリート 36N/mm ² ※1	地 CL級(朝	山 飲岩 I)
熱伝導率	(W/m°C)	2.7	2.7	2.7	1.0	₩2
単位体積重量	(kg/m ³)	2400	2400	2400	2168	₩3
比熱	(kJ/kg°C)	1.15	1.15	1.15	2.6	₩2
	(基本式)	Q(t)=Q	∞ (1-exp(-r(t-	to)s))		-
材齢t日までの	単位セメント量 (kg/m ³)	378	315	450		-
断熱温度上昇量 (打込み20℃の例)	r	1.0	0.8	1.6	-	
	s	1.0	1.0	1.0	-	
	Q(20) (°C)	60.8	53.1	68.2		-
ふくろう	(基本式)	Ec(te)=Φe		-		
1294	(N/mm ²)	33,973	33,694	35,896	150	₩4
	(基本式)	fc(t')=t'/(a+b(t'-sf))fc(i)				-
圧縮強度	推定値(N/mm ²)	42.3	41.6	47.8	3.46	₩3
212634.00	(基本式)	ftk(t')=C1*f'c(t')C2				-
51 成强度	(N/mm ²)	3.14	3.09	3.48	0.37	₩1
ポアソン比	-	0.2	0.2	0.2	0.35	₩4
線膨張係数	×10 ⁻⁶ /°C	12	12	10	10	₩2

※1:土木学会:コンクリート標準示方書[設計編] 2012年制定 ※2:日本コンクリート工学会:マスコンクリートのひび割れ制御指針 ※3:大分212号三光第一号トンネル外構造物詳細設計業務報告書 平成25年1月 ※4:土木学会:トンネル・ライブラリー第16号 山岳トンネルにおける模型実験と数値解析の実務

表4 打設スケジュール・外気温の設定

STEP	打設箇所	打設予定日	外気温 (℃)	コンクリート温度 (℃)	
1	インバート	2017/9/20	22.7	27.7	
2	覆工	2017/11/1	15.0	20.0	

スコンクリート制御指針2016" 2に記載のある対策に加 え,本報告で取り上げる部分パイプクーリングを追記し, 覆工に適用する場合の評価をまとめたものである. 部分 パイプクーリングは、ひび割れ抑制効果が高いこと(施 工実績もあり3,4),次工程に影響しないこと,費用対 効果が高いことから選定した.

部分パイプクーリングを実施時の仕様および配管位置 を表-6,図-5に示す.クーリングパイプ表面の熱伝達率 は、田辺らの式⁵により算出し、322.35W/m²℃とした。 配管位置は、図-4において無対策時にひび割れ指数が1.0 を下回る範囲とした.

図-6に部分パイプクーリングを実施した場合の解析結 果を示す.ブロック中央部の最小ひび割れ指数は1.27と なった.ひび割れ指数が1.0以上となり、無対策時と比 較し0.36改善したため、解析の結果からも、部分パイプ クーリングが温度ひび割れ対策として適切であることが 確認できた。

表-6	パイプク	ーリング信	士様	
** *1	水温	水の流量	熱伝達率	通水期間
12 12	(°C)	(L/min)	$(W/m^2 C)$	(日)
SGP管 外径34.0mm, L=4.0m	15.0	15.0	322.35	2

図-6 最小ひび割れ指数分布図(部分パイプクーリング)

表-5 覆工コンクリートの外部拘束ひび割れ対策の比較	2)
----------------------------	----

外部拘束ひび割れ対策		ひび割れ	工程への	弗 田	新年	(# 半	
大項目	中項目	小項目	抑制効果	影響	貧用	F平1四	佣朽
		[水和発熱の小さいセメントの使用]	○古	√影郷あり	√定	^	若材齢強度が必要な覆エコンクリートへは、
		① 低発熱型のセメントの使用	B	へ応音のり	시티		適用が困難。
		[混和材料の使用]	ΛĦ	○影郷わ1	ΛĦ	^	単位セメント量を低減できるが、温度上昇抑
		② 高性能AE減水剤の使用	4 4	○影響なし			制効果は限定的。
体		[単位セメント量の低減]	ΛĦ	√影郷あり	○任	^	スランプ15cm程度が必要なため、適用は困
積	a.温度上昇	③ スランプ低減	ΔŦ	× 影音のり	014		難。
変	を抑制す	[単位セメント量の低減]	∧ rtı	、影郷なり		^	若材齢強度が必要なため、適用は困難。
化	化る方法	 管理材齢延長 	2 4	へ記音のり			
ぞ 加		[材料温度の低減]	ΛĦ	○影郷わし	√定	^	液体窒素や練混ぜ水の冷却を実施する場合
制		⑤ プレクーリング	4 4	しが音なし			い、設備費用が高い。
す		[養生方法]	⊂ å	に見る子	∧ rti	^	効果はあるが、脱枠後の冷却となり冷却効果
る		⑥ ポストクーリング	回 回	× 於 香 八			が小さい。
I		[養生方法]	○宣	○影郷わ1	۸ th	\circ	限定された部分に短期間のクーリングとする
法	a dan daha ata 30	⑦ 部分パイプクーリング		し影響なし	2 4	0	ことで覆エコンクリートにも適用可能。
	b.収縮ひす	[熱膨張係数の小さい材料の選択]	∧ rh	○影郷わり	л ф	^	地産地消が原則
	みを低減 キサス古	⑧ 熱膨張係数の小さい骨材選定	2 4	し影響なし	4 4		
	させる力	[収縮ひずみを低減させる混和材料の使用]	○宣	○影郷た〕	、宣	\circ	添加量が決まっているので、部材や外気温に
124	100	 膨張材の使用 		し記書なし		0	合わせて膨張効果を調整できない。
外部拘	束度を低減	[ブロックの高さと長さの比を低減]	○喜	√影纓あり	×高	×	工程への影響が大きい。誘発目地の設置は困
さも	とる方法	⑩ スパン長の低減		へ記音のク		^	興 能。
温度ひ	び割れ幅を	[鉄筋比の増加]	×低	○影響なし	○低	0	ひび割れ幅を抑制できるものの、ひび割れの
制御	する方法	 ひび割れ補強鉄筋の配置 	b -w			0	完生ていものは抑制でさない。

3. 部分パイプクーリングの適用

(1) 部分パイプクーリングの温度ひび割れ抑制メカニズム

部分パイプクーリングを実施した際のコンクリートの 部材内部の温度履歴,ひずみ履歴,メカニズムの概念図 を図-7に示す.覆エコンクリート打設開始時よりクーリ ングを実施することで,図中①のように"クーリングに よる内部温度低減効果"が期待できる.その後,クーリ ングを停止すると周辺の未冷却部の温度は低下するが, 冷却部においては図中②のように温度が再上昇し,"冷 却部の遅れ膨張効果"を伴う.また,温度降下時,上部 の未冷却部の温度収縮ひずみ量が冷却部より大きいため, 図中③の"未冷却部の締め付け効果"も期待できる.こ れら3つの効果により,限定された部分のみを短期間ク ーリングすることで,引張応力の集中する冷却部の引張 応力を低減し,ひび割れの発生を効率よく抑制できる.

(2) 部分パイプクーリングの設備

部分パイプクーリングのシステム概要を図-8, クーリ ングパイプの設置状況を写真-1に示す. クーリングパイ プは, 1インチの亜鉛メッキ鋼管とし, コンクリート中 に埋め込み, 最終的にはパイプ内部に無収縮モルタルを 充填して完了となる. そのため, 熱伝導に優れ, コンク

図-7 部分パイプクーリング実施時の温度履歴,ひずみ 履歴の例とメカニズムの概念図

リートと熱膨張係数の等しい鋼材とし、充填まで長時間 放置しても腐食しないことを目的として、亜鉛メッキさ れたパイプを選定した.

部分パイプクーリングの送水設備は**写真-2**に示すよう に、冷却装置、水タンク(200L)、送水ポンプからなり、 セントル内に設置している.それぞれの送水設備の仕様 を**表-7**に示す.冷却水は水和熱により発熱した部材内の

図-8 部分パイプクーリング概要図

写真-1 パイプクーリング実施状況

写真-2 送水設備設置状況

表-7 送水設備仕	禄
------------------	---

送水設備		仕様				
		冷却性能 (50/60Hz)	kW	4.30/4.65		
必却准要	性能	使用周囲温度範囲	°C	$5 \sim 40$		
行却装直		使用温度範囲(液温)	°C	5~25		
	外	径寸法(高さ×奥行×幅)	mm	600×500×650		
		出力	kW	0.48		
送水ポンプ	性能	雪口	v	三相200(50)		
送水ホンノ		电儿	v	三相220(60)		
		口径	mm	25		
水タンク		容量		200		

クーリングパイプに送水され、温度上昇して水槽に戻っ てきたクーリング水は、冷却装置にて冷却され、システ ム内を循環する.

(3) 施工手順

本工事の超大断面部で実施した部分パイプクーリン グの施工手順を以下に示す.

- ① セントルセット前に側壁下端に外径φ34mm, 延長 4.0mのクーリングパイプを500mmピッチで3段、側 壁中央部に水平に配置する.
- ② 打設開始直後から、冷却装置により通水温度を外 気温程度に制御した冷却水を流量15L/分で通水する. 通水温度および流量は、

 外気温および計測結果を 参考に調整する.
- ③ 通水開始から1.5日から2日程度で通水を停止する. 通水時間は計測結果を参考に調整する.
- ④ 通水終了後、配管内にモルタルを充填する、

4. 計測結果

(1) 計測概要

部分パイプクーリングのひび割れ抑制効果確認のた め、無対策と部分パイプクーリング、ひび割れ抑制鉄筋 を追加した対策の効果を比較するため、実構造物の温度 およびひずみの計測を実施した.計測項目を表-8に示す. 打設条件等による影響を排除するため、同じブロックの 左右の側壁で対策条件を変更した. AブロックおよびB ブロックでは左側の側壁を"無対策",右側を"部分パ イプクーリング"とし、Cブロックでは左側を"無対 策",右側を"ひび割れ抑制鉄筋部",Dブロックでは 左側を"部分パイプクーリング",右側を"ひび割れ抑 制鉄筋"とした.

- (2) 部分パイプクーリングのひび割れ抑制効果
- a) 計測条件

計測機器の設置位置を図-9に、設置状況を写真-3に示 す. また、AブロックおよびBブロックの打設当日の打

写真-3 計測機器設置状況

	我 心 时间保持 克							
ブロック	+r÷n n		左側 側壁	右側 側壁				
No.	打設日	対策	計測項目	対策	計測項目			
A	2017/12/14	無対策 [鉄筋比0.2%]	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計)	部分 パイプクーリング	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計)			
В	2017/12/16	無対策 [鉄筋比0.2%]	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計)	部分 パイプクーリング	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計)			
С	2018/1/31	無対策 [鉄筋比0.2%]	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計)	補強鉄筋 (D16+D13) [鉄筋比0.4%]	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計) ひび割れ補強鉄筋ひずみ(鉄筋計D16、D13)			
D	2018/2/2	部分 パイプクーリング	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計)	補強鉄筋 (D16) [鉄筋比0.4%]	上部ひずみ(ひずみ計) 下部ひずみ(ひずみ計) 無拘束ひずみ(無応力計) ひび割り補強鉄筋ひずみ (鉄筋計D16)			

表-8 計測項目一覧

※"上部ひずみ"は、インバート天端から2000mm上方のひずみ、"下部ひずみ"は、インバート天端から500mm上方のひずみ "無拘束ひずみ"は、SL付近に設置した無応力計で測定される無拘束状態のひずみ 鉄筋比はSL下の面積で計算

設状況およびクーリング管理状況を表-9に示す.

b) 計測結果

AブロックおよびBブロックの覆工コンクリート内部 温度の計測結果を図-10,11に,拘束ひずみの計測結果 を図-12,13に示す.また,拘束ひずみは測定されたひ ずみ(全ひずみ)から温度ひずみを引いて算出した.

図-10より、Aブロックの"②パイプクーリング実施 下部"(以下②)は27.0℃、および"④無対策下部" (以下④)は30.9℃となり、3.9℃の低減効果が確認でき た.また、図-11より、Bブロックの"⑥パイプクーリン グ実施下部"(以下⑥)は25.8℃、"⑧無対策下部" (以下⑧)は31.4℃となり、5.6℃の低減効果を確認でき た.

図-12より、Aブロックにおいて、材齢28日時点の拘束 ひずみは、④は71.4µ、②は21.5µとなり、49.9µの低減効 果が確認できた.また、図-13より、Bブロックにおいて は、⑧は74.7µ、⑥は2.5µとなり、72.2µの低減効果が確認 できた.通常、拘束ひずみが100µ程度(引張破壊時の引

表-9 打設状況およびクーリング管理

	hi /=		ク・	ーリング管	·理
BL	打設日	≫r天t温 (℃)	期間 (h)	流量 (L/min)	水温 (℃)
Δ	2017/12/14	AM : 5.0	18	24	$15 \rightarrow 10$
А	2017/12/14	PM : 8.5	40	24	15 /10
D	2017/12/16	AM : 2.7	10	24	10
В	201//12/16	PM : 9.5	48	24	10

張ひずみ=引張強度/ヤング係数)でコンクリートにひび 割れが発生することを考慮すると、部分パイプクーリン グを実施したことで、ひび割れの発生が大きく抑制でき たと考えられる。

また、図-13中の(c)において、クーリング停止後に 拘束ひずみが圧縮側に30µ程度推移した、これは、図-11 中の(a)において覆エコンクリートの内部温度が3℃上 昇したことにより膨張したためと考えられる.さらに、 ⑥のパイプクーリング実施下部にこのような膨張作用が 働く際に図-13中の(b)の青点線に示すように、⑤のパ イプクーリング実施上部において収縮が継続しているた め、下部を引き締め、⑥の拘束ひずみの低減効果が大き くなったと考えられる.部分パイプクーリングの温度応 力低減メカニズムが実測により確認できた.

(3) ひび割れ抑制鉄筋のひび割れ抑制効果

a) 計測条件

CブロックおよびDブロックの計測機器の設置位置を 図-14に,設置状況を写真-4に示す.各ブロックの打設 当日の打設状況およびクーリング管理状況は表-10に示 す.

b) 計測結果

図-15にCブロックの拘束ひずみの計測結果を示す. "⑫無対策下部"および"⑩ひび割れ抑制鉄筋実施下部" の材齢28日時点での拘束ひずみを比較すると概ね同程度

材齢(日)

図-13 拘束ひずみの計測結果(Bブロック)

のひずみ量となった.一方,図-16に示すDブロックの 拘束ひずみの計測結果において, "①ひび割れ抑制鉄筋 実施下部"(以下①)および "①パイプクーリング実施 下部"(以下①)を材齢28日時点で比較すると,①は 54.4µ, ⑪は27.8µとなり,部分パイプクーリングを実施 することで,拘束ひずみが26.6µ低減することを確認し た.これらの結果より部分パイプクーリングはひび割れ 抑制鉄筋よりひび割れ抑制効果が高いことが確認できた.

Cブロックにおいて、ひび割れ抑制鉄筋に設置した鉄筋計の計測結果を図-17,18に示す.全ひずみの計測値はほぼゼロ(図-17中(a))となり、鉄筋はインバートからの鉄筋と結束線で強固に固定されており、変位していないことが確認できた.

一方、ひび割れ抑制鉄筋を設置した箇所の覆工コンク リートにおいては、無対策に比べ、圧縮側に拘束ひずみ が30µ程度大きくなっていることから(図-15中(b))、

コンクリートの温度上昇時の膨張を鉄筋が拘束し圧縮ひ ずみが蓄積されたと考えられる.また,図-18に示すよ うに,鉄筋計の圧縮側のひずみが215µと卓越しており, コンクリートばかりではなく鉄筋にも圧縮ひずみが蓄積 されたと考えられる.これらより,ひび割れ抑制鉄筋は, 覆工コンクリート中に圧縮側のひずみを蓄積させる効果

表-10 打設状況およびクーリング管理

			クーリング管理			
BL	打設日	ット気温	期間	流量	水温	
		(C)	(h)	(L/min)	(°C)	
C	2018/1/21	AM : -1.5				
C	2010/1/31	PM : 7.7	-	-	-	
D	2018/2/2	AM : -0.5	19	24	10	
D	2010/2/2	PM : 9.9	40	24	10	

があるため、ひび割れ抑制効果があると考えられるが、 今回の計測結果では材齢28日での拘束ひずみの値は無対 策と同程度であり、その効果は限定的であると考えられ る.

5. ひび割れ対策の事後評価

(1) 事後解析条件

AブロックおよびBブロックにおいて,計測された外 気温,コンクリートの打込温度,および部分パイプクー リングにおける流量と冷却温度を解析に反映させ,事後 解析(逆解析)を実施した.事後解析の条件を表-11に 示す.本現場では,セントル用バルーンを用いて外気温 の影響を低減させ,セントル内を保温していることから, メタルフォームの熱伝達率を4(W/m²⁰C)とした.また, 覆工コンクリートの養生には,シート吸引方式給水養生 工法⁴を使用しているため,アクアカーテン実施時の熱 伝達率を6(W/m²⁰C)とした.

(2) 事後解析結果

AブロックおよびBブロックの覆工コンクリートの内 部温度の実測値と事後解析による解析値の結果を図-19, 20に示す.AブロックおよびBブロックともに実測値と 解析値の温度は概ね近似しており、事後解析は、実際の

状況をよく表していると考えられる.

図-21にAブロックにおける無体策および部分パイプ クーリング実施時の事後解析におけるひび割れ指数分布 図を示す.Aブロックにおいて,最小ひび割れ指数が無 対策で1.29,部分パイプクーリング実施時で1.63となり, 0.34改善できたことが確認できた.

図-22にBブロックにおける無対策および部分パイプク ーリング実施時の事後解析の結果を示す.Bブロックに おいて,最小ひび割れ指数が無体策で1.26,部分パイプ クーリング実施時で1.72となり,0.46改善できたことが 確認できた.

表-12に一般的な配筋の構造物における標準的なひび 割れ発生確率と安全係数[®]を示す.

AブロックおよびBブロックにおいて、無対策時の対 策レベル評価は"ひび割れの発生を許容するが、ひび割 れ幅が過大とならないように制限したい場合"に対し、 部分パイプクーリング実施時の対策レベル評価は"ひび 割れの発生をできる限り制限したい場合"となり、ひび 割れの発生確率が低下したことが確認できた.

表-11 事後解析で使用した解析条件

	打込温度 (℃)	線膨張係数 (×10 ⁻⁶ /℃)	熱伝達率(W/m ² ℃)			
			メタルフォーム (セントル用 バルーン)	シート吸引方式給水養生工法	外気	
А	8.0	12	4	6	14	
В	8.0	12	4	6	14	

図-21 Aブロック事後解析時の最小ひひ割れ指数分布図

図-22 Bブロック事後解析時の最小ひび割れ指数分布図

6. まとめ

- (1) 施工前に三次元FEMによる温度応力解析を行った 結果,無対策の場合,インバート付近の側壁部で ひび割れ指数が0.91となり,1.0を下回った.
- (2) 施工開始前の温度応力解析の結果,部分パイプク ーリングを実施した場合,ひび割れ指数が1.27とな り,1.0以上を確保できることが確認できた.
- (3) ひずみ計測の結果,部分パイプクーリングを実施 することにより無対策と比べ49.9~72.2µの拘束ひず み低減効果が確認できた.
- (4) 鉄筋計による計測の結果、ひび割れ抑制鉄筋を実施することでコンクリート部材および鉄筋に圧縮ひずみを導入できるが、そのひび割れ抑制効果は限定的であると確認できた。
- (5) "無対策"と"部分パイプクーリング"を比較し たブロックにおいて、計測された条件で事後解析 を行った結果、ひび割れ指数が部分パイプクーリ ングを実施することにより、0.34~0.46改善できた ことが確認できた.

表-12 一般的な配筋の構造物における標準的なひび割れ 発生確率と安全係数^の

対策レベル	ひび割れ発生確率 (%)	安全係数ycr
ひび割れを防止したい場合	5	1.85以上
ひび割れの発生をできる限り制限したい場合	15	1.40以上
ひび割れの発生を許容するが,ひび割れ幅が 過大とならないように制限したい場合	50	1.00以上

(6) 今回,無対策部分においてもひび割れは発生しな かったが,部分パイプクーリングを実施すること により,拘束ひずみが49.9µ~72.2µ程度低減できた ため,将来の温度変化による拘束ひずみの増加に おいてもひび割れは発生しにくいと考えられる.

参考文献

- 九州地方における土木コンクリート構造物設計・施 工指針(案)
- 2) 日本コンクリート工学会:マスコンクリートのひび 割れ制御指針 2016, pp.25~36, 2016.
- 3) 白岩誠史、川中政美、庄野昭、佐藤正、牧剛史:覆 エコンクリートひび割れ対策への部分パイプクーリ

ングの適用, 土木学会論文集 F1(トンネル工学), 73巻, No.3,pp.I_36-I_46.2016

 4) 白岩誠史,栗原浩彦,三沢良太,土屋徹,川中政 美:坑口付近覆エコンクリートの温度ひび割れ抑制 および表層品質向上対策に関する検討,土木学会論 文集 F1 (トンネル工学),73 巻, pp.I_31-I_45,2017.12

5) 田辺忠顕、山川秀次、渡辺朗:パイプクーリングに

ける管壁面の熱伝達率の決定ならびに冷却効果の解 析,土木学会論文報告集,第34号,1984

6) 土木学会:2017 年制定コンクリート標準示方書[設 計編], p.322,2017

(2018.8.10 受付)

VERIFICATION OF EFFECT OF TEMPERATURE CRACK PREVENTION OF TUNNEL CONCRETE LINING IN VERY LARGE CROSS SECTION

Koki AKAIKE , Shogo INADA , Seishi SHIRAIWA , Keiji TAGUCHI and Masato KOHARA

The starting cross section of "Oita No.212 Sanko No.1 tunnel new construction work" is very large with an inner cross-sectional area of 136m². The occurrence of temperature cracks in the side wall part of the lining concrete is of great concern because of the restraint formed on the invert of the lining concrete with a thickness of 60cm. As a counter-measure, the "Localized Pipe Cooling" which is one of the measures to control temperature cracking is adopted.

In this report, the implementation status of Localized Pipe Cooling is described. Also, to comfirm the effects of controlling of concrete cracking, comparison between Localized Pipe Cooling, addition of crack-controlling rebar and no crack control measure is conducted. Based from the results obtained of concrete temperature and constraint strain, it was confirmed that crack prevention due to Localized Pipe Cooling is the most effective.