発破掘削後の トンネル切羽の応力状態に関する検討

吉川 直孝1・伊藤 和也2・堀 智仁3・三田地 利之4

¹正会員 (独)労働安全衛生総合研究所 建設安全研究グループ (〒204-0024 東京都清瀬市梅園1-4-6) E-mail:kikkawa@s.jniosh.go.jp

²正会員 東京都市大学准教授 工学部 都市工学科 (〒158-8557 東京都世田谷区玉堤1-28-1) E-mail: itok@tcu.ac.jp

³正会員 (独)労働安全衛生総合研究所 建設安全研究グループ (〒204-0024 東京都清瀬市梅園1-4-6) E-mail:horito@s.jniosh.go.jp ⁴正会員 北海道大学名誉教授 E-mail: mitachi@eng.hokudai.ac.jp

山岳トンネル建設工事中の労働災害事例を分析すると、建設機械等に起因した災害に次いで肌落ちによ る災害が多い.肌落ちによる労働災害事例から、年間1~2件程度の死亡災害と年間10件弱の死傷災害が発 生している現状にある.このような現状を鑑み、本研究では肌落ちの発生メカニズムを明らかにすること を目的とした.本報告では、小型の直方体の土槽にトンネル縦断面を模擬した地盤を作製し、その切羽に おいて発破掘削を実施した.また、それらの実験をシミュレートするため、個別要素法を用いた解析を実 施した.結果として、発破後の切羽において、岩盤同士の亀裂に介在する固結物には引張応力が残存する ことが示唆された.このため、岩盤同士の亀裂を徐々に押し拡げ、ついには重力によって岩石が落下し、 肌落ちに至ると推察された.

Key Words: tunnel cutting face, blasting, stress state, discrete elemet method, rock fall

1. 序論

山岳トンネルの建設工事中,切羽からの肌落ちによる 死亡災害が,毎年1~2件程度発生している.その災害事 例を分析すると,発破による掘削方式を用いた現場での 災害が多い.例えば,装薬や支保工建込といった作業中 に労働者が被災している¹.

既往の研究^{4,3}から,要素試験レベルではあるが,発 破後に引張応力が残存することが示唆されている.残存 した引張応力が岩盤同士の亀裂を押し拡げ,ついには肌 落ちに至らしめると推察している.本研究は,発破掘削 を否定するものではなく,発破後の切羽の応力状態を適 切に把握することにより,今後,施工の安全性向上を目 指す.本報告では,トンネル縦断面を模擬した地盤を用 いて実験⁴⁾を実施し,個別要素法によるシミュレーショ ンと合せて発破後のトンネル切羽の応力状態を明らかに しようとするものである.

2. 実験およびシミュレーション概要

本研究では、小型の直方体の土槽にトンネル縦断面を 模擬した地盤を作製し、その切羽において発破掘削を実 施した.発破掘削は、着火材と呼ばれる小型の電気雷管 を用いて行った.また、それらの実験をシミュレートす るため、個別要素法を用いた解析を実施した.

(1) 着火材について

着火材は、薬材にクロム酸バリウムとホウ素を主成 分とした混合物を用いており、薬量は40-50mgである^{2,3,3} ⁴⁾ (図-1参照).同着火材は、電圧を付加することで、 爆発する.このとき、薬材は燃焼反応を呈し、音速以下 の燃焼波が発生するとともに発生ガスが膨張すると考え られる.一方、実際の現場で用いられる電気雷管や爆薬 は爆轟反応を呈し、音速以上の爆轟波が発生する.この ように室内実験と実際の現場では現象の相違があるため、 今後、このような相違を模型地盤の相似則を含めて検討 する必要がある.

図-2 模型地盤の概略図

(2) トンネル切羽発破掘削模擬実験

長さ450mm,深さ270mm,奥行き190mmの土槽内にトンネル縦断面を模擬した地盤(以下「模型地盤」という.)を作成した(図-2参照).模型地盤は,豊浦砂(ρ = 2650kg/m³, e_{max}= 0.985, e_{min}= 0.611)を薬液(パーマロックASF-II,シリカ濃度10%)により固結させ作製した. 模型地盤作製方法は,既往の研究^{4,5}に示す固結粒状材料の供試体作製方法と同様である.土槽側面が地になるよう土槽を設置し,予め圧力計を所定の位置(図-2参照)に設置する.その後,層ごとに,薬液及び豊浦砂を土槽 内に投入,振動締固め後,3週間養生させた.

養生後,図-2に示す穿孔パターン図のとおり切羽から 掘進方向に20mmほど穿孔し,穿孔穴に着火材を計21個 設置した.設置後,穿孔穴は豊浦砂で埋め,穿孔穴から ガスが抜けないよう,穿孔穴周辺を瞬間接着剤(コンク リート用ひずみゲージ接着剤)で固結させた.

本実験は1G場(重力場)で実施したが、将来的に50G 場で実験することを想定している.

50Gにて実験を実施した場合、切羽の断面積は約10m² となり、図-3から穿孔数は20個と求まる.したがって、 穿孔数で見ると,実際の現場と本実験(50Gの場合)で 対応が取れている.しかしながら,装薬量で見ると,本 実験の装薬量は12.0kg/m³となり,実際の現場の地山等級 Dクラスの装薬量0.6kg/m³(国土交通省の積算基準⁹参照) と比べて非常に多い.また,着火材は現象として燃焼を 生じ,音速以下の燃焼波を発生させるが,実際の電気雷 管や爆薬は現象として爆轟を生じ,音速以上の爆轟波を 発生させる.このように実際の現場と本実験の整合性が 取れていない条件もあり,今後の課題である.

(3) トンネル切羽発破掘削シミュレーション

シミュレーション方法は参考文献^{0,3,4,9}と同様のもの である.球状の壁要素の位置は、実験における着火材と 同じ位置とした.応力をモニタリングする領域と位置は、 実験における圧力計の設置位置とほぼ同様である.

球状の壁要素を膨張・収縮させ、ガスの膨張による作 用を表現した.球状の壁要素の半径は最初1mmであり、 その後35mm/secの速度で最大半径5mmまで膨張した後、 同速度にて最小半径1mmまで収縮させた^{2,3,4}.

3. 実験および解析結果と考察

(1) 実験と解析の比較

各箇所の応力と経過時間の関係を図-4に示す.経過時間の0秒の位置は、着火材に電圧が付加された時点とは

必ずしも一致していない.現在,着火材に電圧が実際に 付加された時点を調査中であり,調査結果次第では,経 過時間の0秒の位置が変化することに注意が必要である. また,実験結果をプロットで,解析結果を折れ線で示し ている.同図から,実験結果は0.04秒付近から急激に応 力が上昇し,その後,0付近にまで減少しているが,図 中右下の切羽上部と下部の応力と経過時間の関係の拡大 図を見ると,若干ではあるが,圧縮応力が残存している. これは,発破による圧力(約800kNm²)が土被り圧(約

図-3 岩盤強度と穿孔数算定標準図®

(実験:プロット,解析:折れ線)

3~4kN/m²) よりも非常に大きいため、切羽が圧縮され たと推察される. 解析結果を見ると、応力の立ち上がり が緩やかで実験とは一致していない. 0.2秒の時点を見 ると, 圧縮応力が残存していることは実験結果と同様で ある.解析結果では、ボンドに作用する応力のみでなく、 布図を図-5に示す. 0.05秒後には、切羽が着火材の作用 球要素間に作用する応力(圧縮応力のみ伝達)も加算さ

れて図示されていることに注意が必要である.

(2) 考察

高速度カメラによる画像とボンドに作用する応力の分 により掘削されていることがわかる. 切羽から掘進方向 の掘削深さを計測したところ,20mm程度であったこと から,目標とする掘削深さを満足できていた.一方,解 析結果によるボンドに作用する応力の分布を見ると,球 状の壁要素の膨張が終了し,収縮に転じた後(0.2秒後) においても,切羽上部から切羽前面にボンドには引張り 応力が作用していることがわかる.

4. まとめ

未だ結論的なことは明らかとなっていないが,切羽付 近の球要素間のボンドにおいて,発破後に引張応力が残 存する可能性が示唆された.

実際の現場に同現象を当てはめて考えてみると,発破 後には岩盤同士の亀裂に存在する固結物には引張応力が 残存している可能性が示唆され,その引張応力が徐々に 岩盤同士の亀裂を押し拡げ,ついには重力により肌落ち が発生するものと推察される.

しかしながら、用いた着火材の薬量等の実際との相違 があることから、今後も検討を進める必要がある.

謝辞:パーマロックASF-IIを御提供いただいた強化土エ ンジニヤリング株式会社の佐々木隆光氏,着火材を御提 供いただいた日油技研工業株式会社の後藤秀志氏にここ に記して感謝の意を表します.

参考文献

- 吉川直孝,伊藤和也,堀智仁,玉手聡,豊澤康男:トンネ ル切羽の肌落ちによる死傷災害の調査分析と安定対 策の検討,土木学会論文集 F6(安全問題), Vol. 67, No.2, I_125-I_130, 2011.
- Kikkawa, N., Itoh, K., Mizutani, T., Hori, T., Toyosawa, Y., Pender, M.J. and Orense, R.P.: Blasting of cemented granular material and discrete element simulation of the process, *Geomechanics from Micro to Macro*, IS-Cambridge 2014, pp. 411-416, 2014.
- Kikkawa, N., Itoh, K., Hori, T., Pender, M.J. and Orense, R.P.: Discrete element simulation of blasting induced tensile stresses in cemented granular material, *Computers and Geotechnics*, 2015. (to be submitted)
- 4) 吉川直孝,伊藤和也,堀智仁,三田地利之:発破後のトンネル切羽の応力状態に関する検討,第 50 回地盤工 学研究発表会概要集,CD-ROM, 2015.
- 5) 吉川直孝, 堀智仁, 伊藤和也, 三田地利之: 固結粒状材 料における個別要素法パラメータの決定方法の検討, 地盤工学ジャーナル, Vol. 8, No.2, pp. 221-237, 2013.
- 6) 土質工学会・岩の力学委員会編: 岩の工学的性質と設計・施工への応用, p.403, 土質工学会, 1974.
- 7) トンネル施工積算研究会編: 改訂 3版 トンネルの施 工と積算, p. 144, (財)建設物価調査会, 1999.

(2015.8.7受付)

STUDY ON THE STRESS STATE OF TUNNEL CUTTING FACE AFTER BLASTING

Naotaka KIKKAWA, Kazuya ITOH, Tomohito HORI and Toshiyuki MITACHI

The accidents due to rock fall happened relatively a lot next to the accidents caused by mobile plants. There are annualy 1 or 2 fatalities and less than 10 casualities due to rock fall and then we are motivated to reveal the mechanism of rock fall happening. In this report, we prepared a model ground of tunnel vertical section in a rectangular soil container and the tunnel cutting face were excavated by blasting. In addition, we simulated the experimental testing using Discrete Element Method. As a result, it is supposed to remain a tensile stress in bonding agents between rock masses. Thus, it is suggested that the tensile stress will gradually open up cracks between rocks and finally rock will fall down gravitationally.