不整形構造を有する地盤での トンネルの地震時挙動

山口 智也¹·土門 剛²·西村 和夫²

 ¹学生会員 首都大学東京大学院 都市環境科学研究科 (〒192-0397 東京都八王子市南大沢 1-1) E-mail:sp5e65c9@forest.ocn.ne.jp
²正会員 首都大学東京大学院 都市環境科学研究科 (〒192-0397 東京都八王子市南大沢 1-1)

過去のトンネルの地震被害例をみると、成層地盤における地震時応答では起こりえない変形モードに起 因すると考えられる覆工被害が報告されている.本研究では、それらの被害例を踏まえ、実際の地質の急 変や、断層を想定した不整形地盤をモデル化した数値解析を行ない、従来の成層地盤モデルに位置するト ンネルとの地震時の挙動を比較した.その結果、不整形地盤に位置するトンネルでは、成層地盤に位置す るトンネルよりも大きな最大軸力が発生していた.また、最大断面力の発生方向は、成層地盤では、アー チ肩部などの45度方向に発生しているのに対して、不整形地盤の発生方向は、45度方向から天端方向に回 転した.さらに、天端部に発生する最大断面力は、成層地盤に位置するトンネルの数十倍の値が不整形地 盤に位置するトンネルで生じた.

Key Words : seismic response, topographical irregularity of ground, two-dimensional FEM, dynamic analysis

1. はじめに

従来の地下構造物の動的解析では、一般に地盤を成層 であると仮定して、下方から基盤面に垂直に入射するせ ん断波の影響が最も大きいと考えて行なっている。その ような解析でのトンネル挙動では、トンネル自体の質量 が周辺地盤のみかけの質量と比較して相対的に小さいた め、地盤の振動モードに追従する。したがって、トンネ ル覆工に作用する断面力は、アーチ肩部やインバート端 部など45度方向で卓越し、天端付近ではほとんど発生し ない.しかし、実際の地震時のトンネル覆工の被害例を みると、アーチ肩部やインバート端部の他に、成層地盤 では起こりえない変形モードに起因すると考えられる天 端部の覆工被害も生じている。

本研究では、この変形モードがあらわれる要因のひと つとして、不整形地盤に位置するトンネルを考え、研究 の第一段階としてその中でも実際の地質の急変や、断層 を想定して極端にモデル化した不整形構造をもつ地盤の 二次元FEMモデルを用いた.そして、従来の成層地盤モ デルと比較して、不整形地盤に位置するトンネルの地震 時挙動を明らかにすることを目的とした.

2. 解析手法

本解析では、基盤と表層を有する2層の成層地盤と、鉛 直境界を有する不整形地盤の二次元FEMモデルを用い て動的解析を行なった.また、解析コードとして、有限 要素解析プログラムTDAPIIIを用いた.解析の手順とし て、はじめに地盤のみのモデルに地震波を入射し、トン ネルの配置位置を検討する.その後、トンネルを含めた モデルに再度地震波を入射し、解析結果を比較考察する.

(1) 解析モデル

トンネル横断面の地震時挙動に的を絞り、二次元モデ ルとした. なお、研究の第一段階として地山およびトン ネルともに材料特性は線形弾性とし、地山とトンネルの 間の滑り剥離を考慮するためにジョイント要素(図1)を 挿入した.

a) 地盤モデル

地盤モデルは図-2、図-3のように、基盤と表層を有す る2層の成層地盤と、鉛直境界をはさんで軟質と硬質の2 層からなる表層を有する極端な不整形地盤として,典型 的な挙動の把握を目的とした.地盤深さが180mの 1000-180mモデルと540mの1000-540mモデルの2つとし た.物性値は表-1のように、せん断波速度Vsを表層が

図1 ジョイント要素概念図

200m/s, 基盤が700m/sとした.一方, 不整形地盤は表層 の物性を軟質のVsを200m/s, 硬質のVsを基盤と同じ 700m/sと設定した.その他, せん断弾性係数G, 単位体 積重量y, およびポアソン比v, は**表-1**の通りに設定した. 地盤境界には, 逸散減衰を表現するために, 側方には2 次元側方境界, 底面には粘性境界を設置した.

b) トンネルモデル

トンネルモデルは,直径が10m,覆工の厚さが500mmの円形とした.また,トンネル覆工の物性値は表-2のように設定した.

c) 入力地震波

入力地震波として,正弦波と実波の2つを用いた.正弦 波は,最大加速度100gal,データ数1024,16波長の正弦 波を用いた.なお振動数は,使用した地盤モデルにおけ る卓越振動数とした.各モデルでの卓越振動数はそれぞ れ,1000-180mモデルでは0.4Hz,1000-540mモデルでは

表─1 地山物性値				
	Vs(m/s)	G(MN/m ²)	$\gamma(kN/m^3)$	ν
表層(軟質)	200	77	21	0.3
基盤・表層(硬質)	700	125×10	25	0.25

表-2 トンネル覆工物性値			
弹性係数	単位体積重量	せん断弾	キマハノレ
Ec	$\gamma_{\rm C}$	性係数 G _C	ホノシン比
(GN/m ²)	(kN/m ³)	(GN/m^2)	ν
28	23.5	11.7	0.2

0.1Hzである. 正弦波の波形を図-4に示す. 実波は, 新神 戸変電所における兵庫県南部地震の観測記録をVsが 780m/sの岩盤まで引き戻した波を用いた. この地震波は, 最大加速度が383.3gal, 時間刻みDT=0.004である. 実波 の波形を図-5に示す. また,入力地震波は基盤面から垂 直入射させた.

3. 地盤応答解析

トンネルの変形モードは、周辺地盤の振動モードに大 きな影響を受ける.したがって、トンネル配置位置検討 にあたり、不整形地盤における地盤応答解析を行ない、 成層地盤とは異なった振動モードが発生する箇所を調べ、 最も不整形構造の影響が見られる箇所にトンネルを設置 することとした.なお、不整形地盤での基本的な挙動を みるため、入力地震動は正弦波とした.また、解析結果 はいずれの領域モデルもほぼ同じ結果が得られたことか ら、ここでは、1000-540mモデルの結果のみを示す.

図-8 水平軸ひずみと鉛直軸ひずみの和(不整形地盤)

(1) 水平軸ひずみ

図-6は、不整形地盤、成層地盤モデルの1000-540mモ デルにおける最大水平軸ひずみの分布図である.この図 をみると、不整形地盤モデルでは、成層地盤と比較して 相対的に大きな水平軸ひずみが発生していることがわか る.また、不整形地盤モデルにおける水平軸ひずみが卓 越している箇所は、図中の丸で囲まれた範囲であること がわかる.

(2) 鉛直軸ひずみ

図-7は、不整形地盤、成層地盤モデルの1000-540mモ デルにおける最大鉛直軸ひずみの分布図である.水平軸 ひずみと同様に、鉛直軸ひずみも、成層地盤と比較して 相対的に大きな鉛直軸ひずみが発生していることがわか る.また、卓越している箇所は図中の丸で囲まれた範囲 であることが確認できる.

(3) 水平軸ひずみと鉛直軸ひずみの和

図-8は、不整形地盤モデルの1000-540mモデルにおい て、水平軸ひずみが最大となる時間での、水平軸ひずみ と鉛直軸ひずみの和の分布図である.この分布図をみる と、軟質地盤側の鉛直境界近傍の丸で囲まれた箇所で地 盤の体積変化が最も大きくなり、不整形構造の影響を強 く受けていることが分かる.

4. トンネルー地盤応答解析

地盤応答解析の結果を踏まえ、実際にトンネルを配置

して解析を行なった.入力地震動は地盤応答解析と同様 に正弦波を用いた.

(1) 配置位置

トンネルを配置するにあたり、地盤の左端から800m、 下端から40mの位置を原点として、軟質地盤側から硬質 地盤側への右方向を+x、基盤から離れる上方向を+yとし て地盤内座標を作成した.

トンネルの配置位置は、不整形地盤の地盤応答解析よ り求めた図-8のコンター図より、体積変化が最も大きく みられた軟質地盤側の鉛直境界付近とした.図-9に地盤 モデル1000-180mモデルにおけるトンネル配置位置、図 -10に地盤モデル1000-540mモデルにおけるトンネルの 配置位置を示す.

(2) トンネル覆工に生ずる断面力

a) 断面力の最大値

表-3に,1000-180mモデル,1000-540mモデルの成層地 盤,不整形地盤における各モデルの最大断面力を示す.

最大軸力の値は、1000-180mモデル、1000-540mモデル 共に、不整形地盤の方が成層地盤よりも卓越して発生し ているのがわかる.曲げモーメントについては、両モデ ル共に不整形地盤と成層地盤で最大値に大差はないこと が確認できる.モデルの高さで比較してみると、鉛直境 界が高くなることにより、軸力および曲げモーメントの

表-3 各モデルでの最大断面力比較

	1000 - 180m モデル		1000 - 540m モデル	
	不整形	成層	不整形	成層
N(kN)	2160	801	9120	3071
M (kN•m)	351	301	1256	1133

図-12 最大曲げモーメント(左:成層 右:不整形)

最大値がいずれも増大している.

b) 最大断面力の方向

図-11および図-12に地盤が1000-540mモデルにおける 最大断面力図を示す.なお、矢印は、最大値の生じる方 向を示している.図-11をみると、最大軸力は表-3で比較 した通り、不整形地盤の方が成層地盤よりもはるかに大 きくなることがわかる.また、最大値の発生方向が、成 層地盤では+x方向を基準として45度方向に発生してい るのに対して、不整形地盤では、45度から天端寄りに大 きく回転して90度近くに発生しているのが確認できる. 図-12をみると、最大曲げモーメントに関しても、最大軸 力と同様に最大値の生じる方向の回転がみられた.また、 天端部付近に着目すると、最大軸力、最大曲げモーメン トともに、成層地盤では、ほとんど発生していないのに 対して、不整形地盤では、大きく発生していることがわ かる.

c) 天端部断面力

表-4に天端部における断面力の最大値を示す.不整形 地盤に位置するトンネルでは,成層地盤に位置するトン

表-4 天端部断面力比較(1000-540m モデル)

	不整形地盤	成層地盤
軸力(kN)	8875	453
曲げモーメント(kN・m)	1200	27

設計基準強度 f _{ck}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	鉄筋ヤング率Es
(N/mm^2)	亚大用刀 万兄 作谷	(kN/mm ²)
30	SD345	210

表-5 M-N図に関する覆エコンクリート物性値

不整形地盤破壞箇所

図-14 覆工破壊箇所(1000-540m モデル)

図-13 M-N 図(1000-540m)

ネルより,天端部に大きな断面力が発生することがわかる.これは不整形地盤に位置するトンネルのほうが,天端近くに被害が生じる可能性が高いことを示唆している.

d) 覆工破壊評価

1000-540mモデルの成層地盤,不整形地盤モデルにそれぞれ実波を入射し,覆工に生ずる最大断面力を各要素ごとに抽出し,それらをM-N図にプロットして,破壊点を調べた.抽出方法は,不整形地盤では,成層地盤に比べて軸力が卓越しているので,各要素ごとに最大軸力,最小軸力が発生する時間断面を調べ,その時の軸力と曲 げモーメントを抽出した.なお,M-N図の破壊曲線を求めるにあたり,使用したトンネル覆工に関する物性値を 表-5に示す.また,表-5の値の他に,表-2の物性値も用いた.

図-13に、地盤モデル1000-540mのM-N図を示す.図-13 をみると、成層地盤では覆工破壊まで至っていないが、 不整形地盤では耐力強度を超えた断面が多くあることが わかる.

また,図-14はM-N図で調べた覆工の破壊点を図示した

図-15 軸力卓越, 断面力発生方向回転の概念図

ものである.図-14をみると、不整形地盤では実際の被害 箇所である天端部も含め、広範囲で覆工破壊しているこ とが確認できる.なお、成層地盤では覆工破壊には至っ ていない.

5. 考察

解析結果より,不整形地盤に位置するトンネルでは, 主に以下のことが確認できた.

- 覆工に作用する軸力が卓越
- ② 断面力の最大値の発生方向が回転

この2つの現象について、以下に考察を述べる.

(1) 覆工に作用する軸力が卓越

トンネルの質量は周辺地盤のみかけの質量と比較して 相対的に小さいので、地震時には、地盤の振動モードに 支配される.

今回解析を行なったような,鉛直境界を有する不整形 地盤モデルに地震波を入射した際,軟質地盤と硬質地盤 では地盤の硬軟により,変位のモードが異なる.よって, トンネルに作用する応力の概念図は図-15と考えられる.

図-14から表層の鉛直境界部及び硬質地盤が,軟質地盤 に対して壁のような役割を果たす.結果として,せん断 波が入射した際,硬質地盤からの反力を受け,トンネル に圧縮力が生じ,軸力が卓越すると考えられる.

(2) 最大断面力発生方向が回転

前述した通り、今回解析で使用した鉛直境界を有した 不整形地盤モデルでは、トンネルへ硬質地盤からの反力 が作用する.よって、通常成層地盤に位置するトンネル がせん断変形するのとは異なり、不整形地盤に位置する トンネルは横つぶれのような形に変形する.その結果、 最大断面力の発生方向が天端寄りへ回転すると考えられ る.

6. まとめ

本研究により明らかになったことを以下にまとめる.

- (1) 最大軸力の値は,成層地盤に位置するトンネルより も,不整形地盤に位置するトンネルの方が相対的に, 大きく発生している.
- (2) 最大曲げモーメントの値は,成層地盤に位置するト

ンネルと不整形地盤に位置するトンネルで大差は ない.

- (3) 最大断面力の発生方向は、成層地盤では45度であるのに対して、不整形地盤に位置するトンネルでは、45度から天端方向に大きく回転して発生している。
- (4) 実際に被害も生じていた天端部に働く断面力は、不 整形地盤に位置するトンネルでは、成層地盤に位置 するトンネルと比較して、大きな断面力が発生する.
- (5) 不整形地盤に位置するトンネルは,通常のせん断変 形の他に,体積変化が生じるので,耐力強度を超え る断面が多い.
- (6) トンネル覆工の破壊評価について、天端部に着目す ると、成層地盤では破壊していないのに対し、不整 形地盤では覆工破壊がみられた.

今回解析に使用したモデルは、実際の地質や、断層の 存在などの不整形を極端に考慮したものではあるが、不 整形地盤に位置するトンネルでは、成層地盤に位置する トンネルと比較して、大きな断面力が発生した.また、 その発生方向が天端方向に回転することが示された.し たがって、耐震設計では、実際の地質構造を再現した数 値解析を行なうことが必要であると考えられる.

(2014.9.15 受付)

SEISMIC RESPONSE ON TUNNEL HAS THE STRUCTURE OF IRREGULARITY

Tomoya YAMAGUCHI, Tsuyoshi DOMON and Kazuo NISHIMURA

We investigate seismic response on tunnel has the structure of irregularity by dynamic analysis. As a result, it became obvious that the maximum axial force of tunnel lining in the ground with topographic irregularity is larger than that in horizontally layered ground, the direction of maximum cross-section force of tunnel lining in the ground with topographic irregularity is trend in tunnel crown and the maximum cross-section force of tunnel crown lining in the ground with topographic irregularity is larger than that in horizontally layered ground with topographic irregularity is larger than the maximum cross-section force of tunnel crown lining in the ground with topographic irregularity is larger than that in horizontally layered ground.