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Based on the axial symmetrical plane strain assumption, given that the rock mass satisfies the
Mohr-Coulomb failure criterion and exhibits strain-softening behavior, this paper compares two categories
of theoretical methods for ground reaction analyses in conventional tunnelling excavation. They distinguish
from each other according to their treatments for the plastic strain: one is the simplified method in terms of
total plastic strain (i.e. doesn’t consider the unloading process of ground), the other is the rigorous method in
terms of incremental plastic strain (i.e. takes the unloading process into account). The discrepancy between

them and the applicability of tem are reported.
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1. INTRODUCTION

Estimation of the support required to stabilize a
tunnel opening during excavation, especially in the
vicinity of the tunnel face, is essentially a
four-dimensional problem. It not only concerns with
three spatial dimensions but also another temporal
dimension, which corresponds to the advancing
process of the tunnel face (or synonymously the
unloading process of ground). The Ground Reaction
Analyses, which describe the relationship between
the decreasing of inner pressure and the increasing of
radial displacement at the tunnel wall, take a
important effect on the design of mountain tunnel.
Generally, it can be evaluated by theoretical
methods, such as analytical or semi-analytical
elasto-plastic analyses based on axial symmetry
plane strain assumption.

These available methods, although distinguished
by different failure criterions and different
post-failure behaviors, can generally be divided into
two categories according to their treatments for
plastic strain. One is the simplified method in terms
of total plastic strain, and is represented by Brown et
al.V, Oreste and Peila®, Jiang ez al.”’ and others. The

other is the rigorous method in terms of incremental
plastic strain, and is represented by Detournay?,
Carranza-Torres and Fairhurst”, Alonso ez al.? and
others. However, the discrepancy between these two
categories of method has not been reported yet. In
this paper, therefore, given that rock mass satisfies
the Mohr-Coulomb failure criterion and exhibits
strain-softening behavior, these two categories of
theoretical methods are derived respectively. For the
simplified one, analytical solutions are available,
whereas only semi-analytical solutions can be
obtained for the rigorous one. The significant
difference in theoretical assumptions between them
is presented in this paper, and the discrepancy
between them is highlighted quantitatively through
case studies.

2. PROBLEM DESCRIPTION

For generality, the rock mass is assumed to exhibit
strain-softening behavior in this paper. Generally,
the rock mass exhibiting strain-softening behavior is
characterized by a transitional failure criterion f{oy,
n) and a plastic potential g(oy, 7). n is a softening
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parameter controlling the gradual transition from a
peak failure criterion (or potential) to a residual one.
In this paper, the rock mass is assumed to satisfy the
linear Mohr-Coulomb criterion and linear plastic
potential. As for the softening parameter, it can be
defined in different ways, but so far there has not
been a common accepted one among researchers. In
this paper, the major principal plastic strain &
employed as the softening parameter, because it is
relatively simple and can be obtained easily from the
results of uniaxial compression tests. Therefore, the
failure criterion f and the plastic potential g can be
formulated as follows:
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Here, K, is the passive coefficient, and remains
unchanged within the complete plastic region. o; is
the compression strength, and transits gradually from
ol to o, according to the evolution of the major
principal plastic strain &. K, is the dilation factor,
and is equal to Kv/ and KWZ for softening region and
residual region, respectively.

The excavation of a long deep tunnel with a
circular cross section under a hydrostatic in-situ
stress condition can be considered as an axial
symmetry plane strain problem, while neglecting the
influence of gravity, and restricting the out-of-plane
principal stress as intermediate stress. After tunnel
excavation, the surrounding rock mass will
experience elastic, softening and residual regions
sequentially, according to different fictitious inner
pressure provided by the tunnel face and the support.
For generality, Fig. 1 schematically represents a
universal case in the presence of three regions. In
Fig. 1: Py is the hydrostatic in-situ stress; P; is the
fictitious inner pressure; R, R, and R, are the radii of
the tunnel opening, the softening-residual (S-R)
interface and the elastic-softening (E-S) interface,
respectively.

3. Ground responses analyses
(1) Analyses in elastic region

The elastic solution for the excavation of
cylindrical cavities in a hydrostatically loaded

medium is given by Lame's solution”. Applying this
solution to the elastic region of this problem (where
r>R, in Fig. 1), the stresses and displacement
distributions in this region can be expressed as:

2 2

R R
o, =P0 _(R) _O-re)—reT’ Oy :PO +(PO _o-re)-;z—

_Bmo)R L (R-0)R’
2G  r 2G  r
_(R-0)R’

5
2G ¥ ®)

Here, o, and oy are the stresses in the radial and
tangential directions; & and gyare the strains in radial
and tangential directions; and u is the radial
displacement, the unique degree of spatial freedom
in this problem. G is the shear modulus of rock mass,
and g, denotes the radial stress at the E-S interface.

Considering the radial and tangential stresses at
the E-S interface (»=R.), they should verify the
Mohr-Coulomb criterion Eq. (1) exactly, which leads
to:

20 e ©)

An important feature of this solution is that the
stresses at the E-S interface are known constants and
independent of the interface position. Similarly, the
strains at this interface have the same feature as
shown in Eq. (7). This position-independent feature
forms the basis of affine transformation, which will

simplify the analyses in the plastic region
significantly.
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Fig.1 Schematic representation of the rock mass states after
excavation.
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(2) Affine transformation

Firstly, an affine transformation proposed by
Detournay” is introduced, which simplifies the
analyses in plastic region significantly. Since the
states at the E-S interface are known constants and
position-independent, R, can serve as a minified
scale to map the physical plane into a unit plane, by
the affine transformation formulated in Eq. (8).
Correspondingly, all the mechanical variables such
as stress, strain and displacement in the physical
plane can also be normalized into their
dimensionless counterparts in the unit plane
(denoted by tilde mark), according to Egs. (9).
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Fig. 2 schematically illustrates the plastic region
in the unit plane, corresponding to its counterpart
shown in Fig. 1. In Fig. 2, p,, p; and 1 are the radii of
the tunnel wall, the softening-residual (S-R)
interface and the elastic-softening (E-S) interface in
the unit plane, respectively. &  is the normalized

radial stress at E-S interface, and f: is the

normalized inner pressure at tunnel wall.

In addition, the partial derivatives of all
mechanical variables with respect to » and R, are
evaluated with the following operators:

0_140 &0 _ pd0 (10)
o Rdp’ OR R dp

By the virtue of affine transformation, the
normalized states at the E-S interface (o=1) are
greatly simplified into constants as follows. They
serve as the boundary conditions for further analyses
in the softening region.

FEM=5, (11a)
EM=£, =-1 £1)=5, =1 (11b)
=7 =1 (11c)

Similarly, the failure criterion and the plastic

potential are also transformed and simplified in
terms of normalized mechanical variables. Notice
that the major and minor stresses (or strains)
correspond to the tangential and radial stresses (or
strains) in this problem.
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Fig.2 Schematic representation of the plastic region in the unit
plane.

(3) Plastic analyses in terms of total plastic strain

The analyses in terms of total plastic strain assume
that the total plastic strains consist of a constant
elastic part and an increasing plastic part, as
formulated by Eq. (14). The relationship between the
tangential and radial plastic strains can be obtained
from the plastic potential and flow rule, as
formulated by Eq. (15). In actuality, these two
equations can be obtained directly from stress-strain
relationship shown in Fig. 1. The displacement-strain
relationship is rather simple by virtue of axial
symmetry and is formulated by Eq. (16).
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The association of these three equations leads to
the displacement compatibility equation in the
softening region:

;ﬁu(‘wﬁ:ae +K\8, =K! -1
p p

Solving the differential equation with its boundary

condition 7(1) =1, the distribution of the normalized

amn

displacement in this region can be expressed as Eq.
(18), and further, the normalized tangential plastic
strain as Eq. (19).
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Notice that the normalized tangential plastic
strain, serving as the softening parameter in this
paper, should equal to « at the S-R interface (o=p5).

Therefore, an interesting and important feature

comes out that p; (i.e. the ratio of R, to R,) is a
constant that depends only on the properties of rock
mass itself.

b
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On the other hand, the stress states in the softening

region should satisfy the Mohr-Coulomb failure

criterion Eq. (12), and meanwhile verify the
equilibrium condition formulated by Eq. (21).
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Associating these two equations with the softening
parameter g P obtained from Eq. (19), the

equilibrium equation in the softening region can be
derived as:

dG 5 &4+ ~5
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where 5° =2(G) -G7) /(a'K;/ +a) - Solving the

c
differential equation with its boundary condition
6,()=5c,> the distribution of the normalized radial

stress in the softening region can be expressed as:
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Since that p; is a constant only depending on the
properties of rock mass, while substituting p; for pin
the above solutions, the normalized states at the S-R
interface (e.g. 5_, £, , #, ) also come out as

constants, just as their counterparts at the E-S
interface. They serve as important boundary
conditions for further analyses in the residual region.
The analyses in the residual region are similar to
those in the softening region. The displacement
compatibility equation and the equilibrium equation,
similar to their counterparts referring to as Eq. (18)

and Eq. (22), are formulated as follows.
%+K;%=§m +K 8, =K, (1+a)~(1+0K,) (24)
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Solving these governing equations with their
boundary conditions at the S-R interface, i.e.
u(p,) =1, and G.(p)=G, > the normalized

displacement and stress distributions in the residual
region can be expressed as:

C , pI+Ki "
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Here, C,= K:/(1 +a)—(l+aK;,)- In the case that
G, < E <&, the softening region will occur in the

surrounding rock mass (i.e p,<p,<1), and p, can be
calculated out in such a way that set oN-r equal to ﬁ,

in Eq. (23). In the case that 0< P < &, both the

softening region and the residual regions will occur
(i.e p<py), and p, can be calculated out in such a
way that set 5 equal to p in Eq. (27). After p, is

determined, the minified scale R, can also be
determined by R,=R,/p,. Then all mechanical states
in the physical plane can be evaluated by the inverse
affine transformation from their counterparts in the
unit plane.

(4) Plastic analyses in terms of incremental
plastic strain
Based on the incremental theory of plasticity, any
problem in plasticity first requires a definition of
loading path, so that the rates of all mechanical
variables can be evaluated by their first-order
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derivatives with respect to the loading. As for this
problem, the loading path refers to as a monotonic
decrease of P; corresponding to the advancing of the
tunnel face, which in turn leads to a monotonic
increase of R.. Therefore, the rates of all mechanical
variables can be evaluated equivalently by their
first-order derivatives with respect to R,, rather than
P;. 1t is assumed that the total strain rate consists of
both an elastic part and a plastic part, which are
controlled by Hooke’s law and the potential flow rule
respectively, as formulated by Egs. (28)-(30). The
relationship between the strain rate and the
deformation velocity is rather simple by virtue of
axial symmetry and is formulated by Eq. (31).

¢ =5 4P, & =i 1é (28)
Le_l=v v e l=v_ v,
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Here, v is the Poisson ratio of rock mass, and the
rates of all mechanical variables (denoted by a dot
mark) refer to as their first-order derivatives with
respect to R,. Associating these four equations and
eliminating the scalar A, the displacement
compatibility equation in the physical plane can be
expressed as:

@+K E:(l v vKW)d_ _(MKW Kw+v)d_€ (32)

o Vr 2G ! 2G

An additional condition is the consistency
equation, which implies that the material remains in
the plastic state once this state has been achieved.
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Applying the affine transformation to the above
two equations (expressed in partial derivatives), the
displacement compatibility equation and the
consistency equation in the unit plane (expressed in
ordinary derivatives) can be expressed as Eqs. (34)
and (35).

n=0 (33)

20~ ~ d&
'd—lzl— w[lil_lez:(l_v—VKw) .
dp dp p P dp (34)

— (VKW _KU/ + V)—Zl;p—

Y VI 3 P
G do, T &5 G & _, s
oo, dp 0o, dp og," dp

On the other hand, associating the Mohr-coulomb
failure criterion Eq. (12) and the equilibrium
condition Eq. (21), the equilibrium equation can be
expressed as:

~

doc,

+(1-K,)2r =2
p P

The displacement compatibility equation and the
equilibrium equation, together with the failure
criterion and the consistency equation, can only be
solved by numerical methods (say the fourth
Runge-Kutta method), with their boundary

conditions 7(1)=1,u(1)=%,=-1 and & (1)=5, -
From their initial states at the E-S interface (known
as constants), one can evaluate their states at the
sequential positions iteratively, and stop the iteration
when &, = 131 Then the current position is recorded

(36)

as 0, and the minified scale can be determined by
R.=R,/p,. Finally, all mechanical states recorded in
the unit plane are inversely transformed into their
counterparts in the physical plane.

4. Discussions on two categories of theoretical
methods

(1) The discrepancy between two categories of
theoretical methods

Both of the two theoretical methods presented
above are implemented by VB programming. A
representative case is then studied by these two
methods to illustrate the discrepancy between them.
The properties of rock mass employed in this case
are listed in the first line of Table 1, the radius of
tunnel opening R, and the inner pressure P; are set to
5 m and 0 MPa. To validate these two theoretical
methods, the representative case is studied
identically by numerical simulations (code:
FLAC3D), with the parameters listed in the second
row of Table 1. The strain-softening constitutive
laws in FLAC?® are characterized by the friction
angle ¢, cohesion c, dilation angle y and a softening
parameter 7, former three of which may be any
functions of the softening parameter 7 (in tabulated
form).

It is obvious that the friction angle, cohesion and
dilation angle can be obtained directly from the
passive coefficient, compression strength and
dilation factor, as follows:
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‘However, the softening parameter 77 in FLAC™ is
defined as follows®:

5n=—J%\/(6gp -85,y +(3,") +(0g” —o5,”)* (38a)

where &g,/ =(8ef +5ef)/3. Corresponding to this
case, the shift point of softening parameter in
FLAC® that distinguishes residual region from
softening region can be evaluated by:

n,es=%J(2a+aK;)2 +(@-oK, ) +(a+20K,)* (38b)

The stress and displacement distributions in the
surrounding rock mass calculated by the two
theoretical methods (denoted by the solid and dashed
lines respectively) are depicted in Fig. 3. The results
from the numerical simulations (denoted by the cross
marks) are also depicted in this figure. For the most
part, the stress distributions calculated by these two
methods agree with each other exactly, and the
convex point and the concave point on the oy/Py
curve denote the positions of the E-S and the S-R
interfaces in this case. However, there exists a
considerable discrepancy between these two
methods in depicting the displacement distribution of
the plastic region. The results from the numerical
simulations, indubitably, agree with the results from
the rigorous semi-analytical method but not the
simplified one. The significant difference between
these two methods lies in the different assumptions
on the displacement compatibility equation, as
referred to Eq. (14) and Eq. (28), i.e. whether or not
to take the unloading process into account in
displacement calculation. The difference is
elucidated schematically in Fig. 4.

Table 1. Rock mass properties employed in a representative case.

Theoretical method Numerical method

E (MPa) 1000 K (MPa) 667

v 0.25 G (MPa) 400

K, 3.0 () 30
o' o’ (MPa)  5.0,3.0 ¢, ¢! (MPa) 1.44, 0.87
K,/ K} 25,15 W, v () 254,115

a 0.5 Thres 0.0078
P, (MPa) 10 P, (MPa) 10

ﬂa

2.04
Residual Region Softening Region Elastic Region

Rigorous semi-analytical method
Simplified analytical method
X Numerical Method (FLAC™)

2G

LA
R AH-0.)

Fig. 3 The stress and displacement distributions in the
surrounding rock mass.
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Fig. 4 a) Stress states in the surrounding rock mass after
excavation b) Evolution of the plastic region according to
the unloading process.
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In Fig. 4-a, the fixed points B and C denote the
stress states at the E-S and S-R interfaces, which are
constants and independent of their positions. Stress
states in line BC and line CD are governed by the
stress governing equations, referring to Eq. (22), Eq.
(25) in the simplified method and Eq. (36) in the
rigorous one. The moving point P represents the
stress state at tunnel wall, which moves along the
path ABCD, corresponding to the decreasing of inner
pressure. Therefore, the bold line from A to P
represents the stress states in the surrounding rock
mass after excavation. _

Fig. 4-b illustrates the evolution of the plastic
region with the decreasing of P;, which corresponds
to the advancing of the tunnel face. In order to
evaluate the displacement distribution at the current
stage (say the 7" stage where P,=P\"), the rigorous
method evaluates the displacement distribution
iteratively from the nt stage where P=g;,. to the
current stage, according to the displacement
compatibility equation Eq. (34). The simplified
method, on the contrary, does not take the influence
of the unloading process into account and evaluates
the displacement distribution directly, according to
the current inner pressure P’ and the displacement
compatibility equations Eqs. (17) and (24).

However, to the author’s knowledge, the
discrepancy between them has never been noticed
and reported. The following discussion estimates the
error caused by the simplified one.

(2) Parameter studies and discussions

Taking the illustrative case presented above as the
basic case, changing the mechanical properties of
rock mass, some derivative cases are studied in this
section for two purposes: to illustrate the influence of
rock mass properties on the ground reaction and to
estimate the error of the simplified method in
displacement calculation. First, the error of the

simplified method in the tunnel convergence
calculation is defined as:
(rig) _ (sim)
u, = —u
ery=————=0 (39)
@

a

where 1,7 and u,*™ are the tunnel convergences
(namely the released displacements at tunnel wall)
evaluated by the rigorous and the simplified
methods. Apparently, The error will reach its
maximum er7y,q on the occasion of P=0.

Three groups of derivative cases with different K,
o/(c?) and KV,I(KV,Z) are studied by the two
theoretical methods, and their ground reaction curves
are depicted in Figs. 5-7. Both of these two
theoretical methods show the same tendency that the

strength characters of rock mass, K, and a.'(c;?),
influence the range of the plastic region
significantly, which in turn influence the tunnel
convergence dramatically, as illustrated in Fig. 5-6.
On the contrary, the dilation factor of rock mass
K,/(K,’) doesn’t influence the range of the plastic
region, but also influences the tunnel convergence to
some extent, as illustrated in Fig. 7. While focusing
on the error of the simplified method in displacement
calculation, it will increase monotonically with the
decreasing of ¢,'(o;%) and the increasing of K, .,,1 (K ,,,2),
but seems independent of K,,. According to parameter
studies, the err,,, caused by the simplified method is
estimated to range from 20% to 40% on common
conditions.

oAs-‘
£ -—-- Rigorous semi-analytical solutions
B Simplified analytical solutions
0.6 -
K 30 25 20 15
0441 err  30% 30% 30% 30%
02 i
0.0 — X C e . N
0 50 60
U, 2G
R, (K-o.)

Fig. 5 The influence of K, on ground reaction curves.

0.6+
Ll
A -—-- Rigorous semi-analytical solutions
0.5+ Simplified analytical solutions
0.4
gl o’ (MPa) 25,15 50,30 75,45
0.3 4
err, 35% 30% 24%

u, 2G
R, (£ -0,)

Fig. 6 The influence of &', 6,7 on ground reaction curves.
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0.2 4
0.1 T
0.0 —

Fig. 7 The influence of K,/, K,” on GRC.

5. Conclusions

Ground reaction analyses for the conventional
tunnelling excavation have been discussed by
numerous researchers, with different rock mass
constitutive laws, under different excavation
conditions and by different approaches. Particularly,
based on the axial symmetrical plane strain
assumption, the analytical (or semi-analytical)
solutions have been of most significance, because it
serves as one of the three basic components in the
convergence confinement method and play an
important role in the design of tunnel support system.
The available methods-can be generally divided into
two categories according to their treatments for the
plastic strain: the simplified method in terms of total
plastic strain and the rigorous method in terms of
incremental plastic strain.

Based on the rationales proposed by former
researchers, given that the rock mass satisfies the
Mohr-Coulomb failure criterion and exhibits
strain-softening behaviors, these two categories of
theoretical methods are derived respectively in this
paper. The significant difference between them lies
in the different assumptions on the displacement
compatibility equation in terms of total or
incremental plastic strain, in other words, whether or

not to consider the unloading - process in
displacement. calculation. Through an illustrative
case, it is revealed that although the stress
distributions evaluated by these two methods agree
with each other well, there exists a considerable
discrepancy between them in depicting the
displacement distribution of plastic region. It is
indubitable that the rigorous semi-analytical method
reflects the nature of tunnel excavation more
realistically, and the simplified one underestimates
the displacement released in the plastic region of the
surrounding rock mass.

The simplified method can only be used in
predicting the range of plastic region and the stress
distribution in surrounding rock mass, but is
estimated to have an error in evaluating the tunnel
convergence, which ranges from 20% to 40% on
common conditions.
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