(31) 量子コンピュータを用いた指定廃棄物の 輸送計画最適化に関する基礎的検討

牧野 純也¹·矢吹 信喜²·福田 知弘³

 ¹学生会員 大阪大学 大学院工学研究科 環境エネルギー工学専攻 博士前期課程 (〒565-0871 大阪府吹田市山田丘 2-1)
E-mail: makino@it.see.eng.osaka-u.ac.jp

²フェロー会員 大阪大学教授 大学院工学研究科 環境エネルギー工学専攻 E-mail: yabuki@see.eng.osaka-u.ac.jp

³正会員 大阪大学准教授 大学院工学研究科 環境エネルギー工学専攻 E-mail: fukuda@see.eng.osaka-u.ac.jp

東日本大震災により発生した指定廃棄物の輸送は、種々の制約を満たす最適な計画を立てる必要がある が、組み合わせ爆発による計算時間の増大により、近似解を求めることに留まっている.本研究では、指 定廃棄物の輸送計画に必要な、定められた時間内に所定の車両数を用いて輸送すること、輸送による放射 能の周辺環境への影響を低減することに着目し、量子コンピュータにより最適な輸送計画案を導くための 基礎的な定式化を行った.また、様々なパラメータ値の下で、制約条件の大きさによる最適なルートの検 出確率を比較し、適切な制約条件のパラメータ値を検討した.最適化の結果、必要な制約条件のパラメー タの大きさは、シミュレーテッドアニーリングと比較し、量子アニーリングの方が大きく、適切なパラメ ータ値の設定が必要であることを確認した.

Key Words: quantum computing, designated waste, optimization problem, transportation plan

1. はじめに

2011年の東日本大震災により発生した指定廃棄物は, 1 kg 当たり 8000 Bq を超える放射性物質を含み,焼却灰 や農林業系副産物などの環境大臣が指定したものであり, 一時保管場所や仮置き場から十分な放射能汚染対策がさ れている処理施設へ輸送し,集約して処理が行われる¹⁾. 輸送にあたっては決められた速度,各輸送車両の時間間 隔,到着時刻で運搬するために最適な運搬ルートを求め る必要があることに加え,定められた輸送量を期間内に 遅延なく運ぶ必要がある²⁾.しかし,ルートの最適化問 題は解となりうる候補が多いことから組み合わせ爆発に より,計算時間が非常に長くなる場合があるため,実際 は最適近似解を求めることに留まっている.

近年,量子コンピュータに対する投資が急速に増え, 米国や中国を中心にハードウェア,ソフトウェアの研究 開発が進んでいる.量子コンピュータには,汎用性のあ る量子ゲート方式と,組み合わせ最適化問題を解くこと に特化した量子アニーリング方式³がある.量子ゲート 方式の量子コンピュータは現在,実機に搭載される量子 ビット数や演算過程で発生するエラーの大きさの観点か ら,実用化には時間がかかることが見込まれている.一 方,量子アニーリング方式の量子コンピュータは,数千 量子ビットを持つ実機が公開されている.また近年,実 問題への応用に向けた検討が進み,Neukartら⁴は量子ア ニーリング方式の量子コンピュータを用い,実際の都市 を走るタクシーを対象に,渋滞解消に向けた検討を行い, 最適化の結果有意な渋滞緩和が確認された.

そこで本研究では.指定廃棄物輸送にかかる複数の課 題に着目し、その課題を組み合わせ最適化問題として、 量子アニーリング方式の量子コンピュータで解くための モデル化、定式化を行う.また、定式化したコスト関数 を様々なパラメータ値を用いて最適化を行うことで、最 適化精度やパラメータ値による解の出力の状態を評価す る.また、従来のコンピュータにより算出した厳密解 と比較することで、量子アニーリング方式の量子コンピ ュータ実機を用いた、指定廃棄物の輸送計画最適化の有 効性、妥当性を検討する.

2. 理論と最適化モデルの定式化

(1) 量子コンピュータによる最適化

組み合わせ最適化問題は要素の数が多くなることで組 み合わせ爆発が起きることが知られている.量子アニー リングは、この問題に対して量子力学の性質を用いるこ とで、最適解を探索し、効率的な最適化が可能となると 見込まれている.

量子アニーリングによる最適化の際には、問題を QUBO (Quadratic Unconstrained Binary Optimization) と呼ばれ るコスト関数に定式化する必要があり、このコスト関数 の最小値を探索することで最適解を求める.コスト関数 は、0または1で出力される量子ビットを変数とする関 数であり、量子コンピュータを用いた最適化では、問題 を適切にこの形で表現することが求められる.

指定廃棄物輸送計画の策定にあたっては、ある期間に 輸送する必要のある車両数が定められており、それらを 放射線防護の観点から、十分な車間を保ち、輸送を実施 する必要がある.従って、これらの課題に対応した輸送 計画の策定が求められる.

$$H = A\left(\sum_{k=1}^{4} q_k \cdot q_{k+1} + \sum_{k=6}^{9} q_k \cdot q_{k+1}\right)$$
$$+ B\left(\sum_{k=1}^{3} q_k \cdot q_{k+2} + \sum_{k=6}^{8} q_k \cdot q_{k+2}\right)$$
$$+ C\sum_{k=1}^{5} q_k \cdot q_{k+5} + D\left(\sum_{k=1}^{10} q_k - N\right)^2$$
(1)

ここに,

- $H: コスト関数, q_k: 量子ビット, N: 車両数,$
- A:最近接時刻で輸送する重みを決定するパラメ ータ,
- B:第二近接時刻で輸送する重みを決定するパラ メータ,
- C:同じ地点から同時刻に出発し別道路を用いる 輸送の重みを決定するパラメータ,
- D:輸送車両数に関する制約条件の大きさを決定 するパラメータ.

そこで本研究では、初期的な検討として、図-1 に示 す、仮置き場から特定廃棄物埋立処分施設へ、複数の車 両を用いて輸送する問題を定義した.式(1)に本モデル におけるコスト関数 Hを示す.ここで、第1項から第3 項は先述した課題に関する重みであり、第4項では、車 両数の制約を表す.また、式(1)における各量子ビット の配置を表-1 に示す.

表-1は、各量子ビットが1を出力したとき.指定廃棄 物を、時系列順5つの輸送開始候補時刻のいずれかに、 道路1、道路2いずれかを用いて輸送することを意味す る.例えば、時刻1を午前9時、時刻2を午前10 時、・・・とし、 q_1 =1、 q_6 =0、 q_2 =0、 q_7 =1を出力した 場合、午前9時に道路1、午前10時に道路2を用いた輸 送を開始することとなる.

このコスト関数 H の値が最小となる, q_k の出力の組 み合わせを量子コンピュータを用いて導出し,必要な制 約条件項の大きさや最適解の検出確率を各パラメータ値 を変化させることにより評価する.

(2) 従来のコンピュータによる最適化

量子コンピュータによる最適化により出力された解を 評価するため、従来のコンピュータにより、目的関数の 値が最小となる最適解や、そのほかの出力の目的関数の 値を算出した.ここでの最適化を行う目的関数を式(2)、 車両数を指定する制約条件を式(3)に示す.

$$f(x_1, x_2, \dots, x_{10}) = A\left(\sum_{k=1}^{4} x_k \cdot x_{k+1} + \sum_{k=6}^{9} x_k \cdot x_{k+1}\right)$$

$$+B\left(\sum_{k=1}^{5} x_k \cdot x_{k+2} + \sum_{k=6}^{5} x_k \cdot x_{k+2}\right) + C\sum_{k=1}^{5} x_k \cdot x_{k+5} \quad (2)$$

$$\sum_{k=1}^{10} x_k = N$$
(3)

ここに,

 $f(x_1, x_2, \dots, x_{10}): 目的関数,$ $x_k: 0 または1をとる変数.$

表-1 検討モデルにおける量子ビットの配置

発車時刻	道路1	道路2
時刻1	q_1	q_6
時刻 2	q_2	q_7
時刻 3	q_3	q_8
時刻 4	q_4	q_9
時刻 5	q_5	q_{10}

これを、図-2 に示す最適化フローに従い、制約条件 を満たす解の候補となる x_k の組み合わせを算出した後、 初期値と各 x_k の組み合わせを用いた目的関数の値と比 較し、目的関数の値が最小となる最適解を求めた.

3. 最適化と精度評価

(1)5台の輸送計画最適化

2章の1節で定式化したコスト関数の最適化を,制約 条件となる輸送車両数を5台に指定し、シミュレーテッ ドアニーリングと量子アニーリング実機により行った. ここで,量子アニーリング実機は、D-Wave System 社が クラウド上で提供している Advantage_system1.1を用い、 以降の最適化では**表-2**で示す各パラメータ値を用いた.

はじめに、図-2 に示す最適化フローにより、目的関数の最小値である最適解を求めた.算出した解のうち、目的関数の値が小さなx_kの組み合わせを表-3 に示す. これより、本モデル最適化における最適解は、目的関数の値が 60 となる 4 種類の変数x_k組み合わせであることが確認された.従って、本節ではこの4種類の変数x_k組み合わせの検出確率の和を最適解の検出確率と表記する.

ここで、パラメータの設定による、量子アニーリング 実機での最適化精度の変化を評価するため、表-2 で定 義した各パラメータ値に加え、*A,B,C*各パラメータを定 数倍(4倍,2倍,1/2倍,1/4倍)することで、同様の最適解を 示す複数のコスト関数を用いて最適化を行った.これら 複数のコスト関数を、シミュレーテッドアニーリングを 用いて最適化を行った結果を図-3、量子アニーリング実 機による最適化結果を図-4 に示す.なお、図-3 以降の 各凡例は、コスト関数内 *A,B,C*=50,30,10 に対して掛け る数を表す.

図-2 従来のコンピュータによる最適化フロー

〒−2 取週11にねりる谷坞のハノメーク	表2	最適化における各項の	パラメ	ータ値
----------------------	----	------------	-----	-----

パラメータ	使用した値			
A	50			
В	30			
С	10			

表-3 小さな目的関数の値をとる変数x_kの組み合わせ

$f(x_1, x_2$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> 9	<i>x</i> ₁₀
$, x_{10}$	0	1	0	0	1	1	0	0	1	1
60	0	1	0	0	1	1	0	0	1	1
60	1	1	0	0	1	1	0	0	1	0
60	1	0	0	1	1	0	1	0	0	1
60	1	0	0	1	0	1	1	0	0	1
70	1	1	0	0	1	1	0	0	0	1
70	1	0	0	1	1	1	0	0	1	0

図-3 シミュレーテッドアニーリングによる、複数コスト関数の制約条件を満たさない確率(上)、最適解の検出確率 (下)

図-4 量子アニーリングによる,複数コスト関数の制約条件を 満たさない確率(上),最適解の検出確率(下)

制約条件のパラメータ値は、制約条件項がコスト関数 全体に占める割合を小さくするため、出力が制約を満た す中で、できる限り小さな値に設定する必要がある.

図-3 より,コスト関数全体を定数倍したとき,適切 な制約条件のパラメータ値も同様の挙動を示すことが確 認された.また,コスト関数を表-2 に示す値の4倍に したとき,最適解の検出確率が他のコスト関数を比較し, 小さくなった.これは,シミュレーテッドアニーリング では,対象とする問題に応じて,適切なパラメータ値の 大きさが異なるため,本コスト関数では表-2 で定義し たパラメータ値を4倍としたとき,最適解へ収束する確 率が減少したと考えられる.

量子アニーリングによる最適化の結果,制約条件のパ ラメータ値に関わらず,制約条件を満たさない解が 10%前後検出された.そこで,制約条件を満たさない解 の検出確率が20%以下の中で最も小さな制約条件のパ ラメータ値が適当な値であると仮定すると,量子アニー リングの方がシミュレーテッドアニーリングと比較し, 大きな制約条件のパラメータ値が必要であるといえる.

(2) 6 台の輸送計画最適化

輸送車両数5台の場合と同様にして,輸送車両数を6 台と指定し,最適化を行った.従来のコンピュータにより,最適解となる2種類の配置の組み合わせを算出した後,量子アニーリング実機により最適化を行った.最適 化の結果を図-5に示す.

図-5 量子アニーリングによる,輸送車両数を6台に制限した 複数コスト関数の制約条件を満たさない確率(上),最適 解の検出確率(下) 最適化の結果,5種類いずれのコスト関数においても, 制約条件を満たさない解の検出確率が5台の時と比較し 上昇した.これは,5台の場合,制約条件を満たす解は 252通り,6台の場合は210通りであり,制約条件を満た す解の候補が少ないことが原因だと考えられる.また, 最適解の検出確率は5台の場合と同様に,シミュレーテ ッドアニーリングのような制約条件のパラメータ値によ る大きな傾向はみられなかった.また,最適解の検出確 率は各コスト関数において,10%以下であり,5台の場 合を比較し減少した.従って,最適化精度向上のために は,車両数以外の制約条件を追加することで,制約条件 を満たす解の候補を減らすことが有効であると考えられ る.

4. まとめ

本研究では、量子コンピュータを指定廃棄物の輸送計 画へ応用するための、基礎的な検討を行った.

シミュレーテッドアニーリングによる最適化では、最 適な制約条件のパラメータ値は、その他のパラメータ値 数の変化と同様の挙動を示すことが確認された.一方、 最適解の検出確率は、パラメータ値の設定により異なり、 適切なパラメータ値の設定が必要だと考えられる.

量子アニーリングによる最適化では、制約条件項が大 きくなるにつれて、出力が制約条件を満たす確率は増加 したが、制約条件のパラメータ値の大きさに関わらず、 制約条件を満たさない解が検出されることが確認された. そのため、最適化精度向上のためには、制約条件を満た す最適解の候補を減らす工夫が必要である.

今後の課題として,実際の道路情報に即したモデルを 用いた定式化,輸送計画最適化の実施と,最適化精度向 上のための制約条件を検討することが挙げられる.

参考文献

- 環境省:指定廃棄物関係ガイドライン, 2013.3, <https://www.env.go.jp/jishin/rmp/attach/haikibutsu-gl03_ver2.pdf>, (入手 2021.2.16).
- 環境省:特定廃棄物等の埋立処分事業に係る輸送計 画,2017.11, <http://shiteihaiki.env.go.jp/tokuteihaiki_umetate_fukushima/sp/pdf/transportation_plan.pdf>, (入手 2021.4.30).
- Kadowaki, T. and Nishimori, H.: Quantum annealing in the transverse Ising model, *Phys. Rev. E*, Vol. 58, pp.5355-5363, 1998.
- Neukart, F., von Dollen, D., Compostella, G., Seidel, C., Yarkoni, S. and Parney, B.: Traffic flow optimization using a quantum annealer, *Frontiers in ICT*, Vol. 4, No. 29, 2017.