(8) 桟橋の維持管理を支援するテクスチャ付き 3D 簡略モデルの自動構築手法

溝口 知広1・家村 享明2・藏重 裕俊2・水野 剣一3・谷口 修3

¹非会員 日本大学 工学部情報工学科 (〒963-8642 福島県郡山市田村町徳定字中河原 1) E-mail: mizoguchi.tomohiro@nihon-u.ac.jp

²非会員 株式会社計測リサーチコンサルタント クリエイティブ事業部 (〒732-0029 広島県広島市東区 福田1丁目665-1) E-mail: iemura@krcnet.co.jp, kurashige@krcnet.co.jp

³正会員 五洋建設株式会社 技術研究所 (〒329-2746 栃木県那須塩原市四区町 1534-1) E-mail: kenichi.mizuno@mail.penta-ocean.co.jp, osamu.taniguchi@mail.penta-ocean.co.jp

老朽化が進む桟橋の劣化診断のため、ボートで桟橋下面を移動しながら撮影した構造物の画像に基づき 診断を行うシステムが開発されている.このシステムでは、画像から SfM/MVS により 3D モデルを作成 し、このモデル上にひびわれ等の劣化を記録することで 3 次元的に診断結果を確認することが可能である. しかしながら作成される 3D モデルは数千万ほどの要素からなる高密度ポリゴンモデルであり、その取扱 いが難しい.本報告では、桟橋の維持管理を目的とし、桟橋のポリゴンモデルから、テクスチャ付 3D 簡 略モデルを自動構築する手法を提案する.提案手法では、ポリゴンを密に近似する平面集合からなる簡略 モデルを構築し、平面領域ごとにオルソ画像を作成し、これを簡略モデルにマッピングする.桟橋を対象 とした実験よりその有効性を検証する.

Key Words: pier, maintenance, SfM/MVS, textrued 3D simplified model

1. 緒 論

国内の港湾構造物の多くで老朽化が進んでおり、これ を効率的かつ効果的に維持管理・更新することの重要性 が指摘されている.この目的のため、桟橋下面をラジコ ンボートで移動しながら構造物の撮影を行い、画像解析 により構造物の劣化診断を行うシステムが開発されてい る¹⁾.画像解析においては、SfM/MVSにより 3D モデル を構築し、部材ごとのオルソ画像を取得し、この画像上 でひび割れ、錆汁、剥落等を抽出することで、構造物の 自動劣化診断を実現している.

しかしながら生成される 3D モデルは一般的には数千 万から数億程度の要素から構成される高密度ポリゴンモ デルである.そのためモデルの取扱いが難しく,診断結 果を 3D モデルと合わせて確認する際に表示処理がスム ーズに行えないといった問題がある.またオルソ画像作 成時には,領域境界点の選択をオペレータが対話的に行 っており,これに長い作業時間を要している.

そこで本研究では、この高密度ポリゴンモデルから 3D 簡略モデルを自動構築する手法を提案する.また構 築した簡略モデルの領域境界点を利用し、領域ごとのオ ルソ画像を自動作成し、これを簡略モデルにマッピング する方法を提案する.構築したモデルは軽量であるため タブレット端末でも滑らかな描画が可能であり、桟橋点 検の様々なプロセスで有効活用できる.

2. 開発手法の概要

(1) 桟橋の形状特徴

桟橋の形状特徴として、以下の4点が挙げられる.

- 水平方向には大きな広がりがあるが、鉛直方向の 奥行きは小さい。
- ・ 形状は平面のみで構成される.
- 構造物中には互いに直交する支配的な3軸が存在し、
 構成平面のほとんどはこれらのいずれかに平行に
 配置されている.
- 図-1 に示すように、鉛直下向きの領域では、コン クリートが大きく剥落した箇所が多く、表面凹凸 が大きい、一方で水平向きの領域では、劣化の度 合いは軽微で、表面凹凸は小さい。

図-1 桟橋のコンクリートの剥落の例

図-2 構築する 3D 簡略モデルの概要

(2) 簡略化モデル構築手法の基本的なアイデア

本研究では上記の特徴を考慮し、桟橋に特化した 3D 簡略モデル構築手法の開発を行う.入力は SfM/MVS に て生成したテクスチャ付き高密度ポリゴンモデルとする. 提案手法ではこのモデルを平面投影し、この投影平面上 で領域分割を行い、結果として得られる領域とその境界 線であるエッジをそれぞれスウィープすることで 3D モ デルを構築する.これにより、RANSAC 法 ³や領域成長 法 ³による 3D モデルを直接処理する手法と比べ、構造 物の一部が大きく剥落しデータ中の表面凹凸が大きなデ ータに対しても、高品質なモデルを効率的に構築できる.

(3) 構築する 3D 簡略モデルの概要

本手法で構築するモデルは、図-2のような一般的な CAD モデルと同等の位相と幾何からなるデータ構造を 持つ 3D モデルである.また各領域は領域境界に沿った オルソ画像を持つ.

3. 簡略モデル構築手法

開発した 3D 簡略モデル構築手法は、以下の 4 ステッ

図-3 提案する簡略モデル構築手法の概要

プから構成される.

(1) モデルの座標変換と高さ画像の作成

構造物中の支配的な3軸を,三角形法線ベクトルのガ ウシアンマッピングと RANSAC 法にて検出し,点群を 整列させる座標変換を行う.次に点群を高さ画像へ変換 する.ここでは鉛直上向き(+z)方向を高さ方向とした. 各点を xy 平面へ投影し,平面をピクセル分割し,各ピ クセル内の複数点の平均高さを求める.ピクセルサイズ は約10cm×10cmとした.作成した画像を図-3(a)に示す.

(2) エッジと頂点の検出a)領域候補ピクセルの抽出

ポリゴンモデルの三角形のうち、その法線ベクトルが およそ水平方向を向くものだけを閾値処理にて抽出する. その後 xy 平面への投影から、上記の高さ画像と同様に バイナリ画像を作成する.図-3(b)に作成した画像の例を 示す.ここでこれらのピクセルを、領域境界候補ピクセ ルとする.

b)領域成長法によるエッジと頂点の抽出

次に領域境界候補ピクセルを対象に、領域成長法にて 直線状に分布する連結ピクセル集合を1つとするセグメ ンテーションを行い、これにフィットする直線を算出す る.この処理の結果として、複数のエッジが作成され、 その両端点は頂点となる.図-3(c)に作成したエッジと頂 点の例を示す.

c) エッジの接続

上記の処理でエッジは不連続であるため, エッジの全 ペアに対し, 図4 に示すように, 2 パターンに分けて接 続処理を行った.

・両端点が近い距離にある場合(図-4(a))

異なる2直線の端点同士が近い距離にある場合,それ

図-4 エッジの接続と分割

(b) カメラの設定

図-5 オルソ画像の作成

ぞれを延長し交点を求め、これを新たな共通頂点とする ようエッジを接続する.

・端点が直線と近い距離にある場合(図-4(b))

2 直線のうち、一方の端点が他方の直線と近い距離に ある場合、端点が直線上に乗るように頂点座標を更新し、 するエッジを接続する.また他方の直線を、これを新た な端点として2分割する.

(3) 領域の作成

a) 鉛直領域の作成

次に鉛直領域を作成する.そのため,前節で作成した エッジが通過する画像中のピクセルを抽出しておく.こ こではこれを領域境界ピクセルと呼ぶ.次に,連結する 非領域境界ピクセル集合を1つとするクラスタリングを 行い,それぞれを鉛直領域とする.また領域ごとに,高 さ画像の該当ピクセルの平均高さを求め,領域にフィッ トする平面方程式を算出する.図-3(d)に作成した鉛直領 域の例を示す.また作成した領域ごとに,その周囲のエ ッジ集合を探索し,これをループとする.

b)水平領域の作成

次に、各エッジを鉛直方向にスウィープすることで水 平領域を作成する.そのためまず、各エッジから、それ に隣接する2つの鉛直領域を探索する.本手法では、各 エッジが通過するピクセルから、2近傍以内にある領域 ピクセルの数をそれぞれ数え、上位2つを隣接領域とし た.その後、各エッジをそれに隣接2領域の平均高さま でそれぞれスウィープすることで、長方形の水平領域を 作成する.この処理で新たにエッジ3つが作成され、元 のエッジと合わせてループを作成し、4端点から平面方 程式も計算する.

(4) 逆変換

最後に、手順(1)で適用した座標変換行列の逆行列を 計算し、これをモデルに適用する.ここまでの処理によ り、平面集合からなる 3D 簡略モデルが完成する.

4. オルソ画像の作成とモデルへのマッピング

次に、SfMMVS にて作成した高密度ポリゴンモデル とその簡略モデルを元に、全ての領域のオルソ画像の作 成方法について述べる.ここでは 3D コンピュータグラ フィックライブラリである OpenGLの機能を用いて 3Dモ デルを読み込み、カメラ位置・方向等を調整してレンダ リングを行うことでオルソ画像を生成する.オルソ画像 が生成できれば、それをマッピングした 3D モデルはモ デリングソフトを用いて手動でも容易に作成できる.

(1) 入力データ

本手法への入力データは、高密度ポリゴンモデルと、 作成した簡略モデルの各領域のループのコーナー点であ る.図-5(a)に例を示す.

(2) 処理手順

本節ではデータ処理手順を示す.以下に1つの領域に 対する手順を示す.この一連の処理を読み込んだすべて の領域に対し適用することで,全体モデルを構築する.

a) バウンディングボックス(BB)の構築

面の法線ベクトル**n**が同一の平面上に多角形を囲むバ ウンディングボックスを構築する.

b) カメラの移動と回転

OpenGL 内部でカメラ位置・姿勢を次のように設定する. 例を図-5(b)に示す. ここで BB の中心を c とする.

- カメラ位置:c+n
- カメラ姿勢:-n
- カメラ回転:カメラの上方向とBBの上方向が一致 するように回転させる

図-6 構築した 3D 簡略モデル

c) カメラ視体積の設定

レンダリングを行う範囲をカメラ座標系にて設定する. 視体積の幅,高さはバウンディングボックスの幅と高さ を指定し,奥行きは-2mから0.5m程度とする.

d) レンダリングの実行

OpenGL でレンダリングを実行し、グラフィックを描 画する. 描画した結果はモニタへ出力せずに画像ファイ ルとして保存する.

e) 不要な領域の削除

生成される画像はバウンディングボックスの範囲も描 画されるため、多角形の外側の領域を削除する.例を図 -5(c),(d),(e)に示す

5. 実験結果

図-6 に作成した提案手法による実験結果を示す.図-6(a)には入力の高密度ポリゴンモデルを陰影付けして表示したものを、図-6(b)にはテクスチャ表示したものを、 図-6(c)には作成した簡略化モデルを示す.入力は約210 万三角形からなるポリゴンモデルであり、桟橋全体から 一部を切り取ったものである.このモデルからは338個 の水平領域と73個の鉛直領域が生成された.目視で確認する限りにおいては、表面積の大きな領域では1つの 領域と思われる部分ごとに領域が作成できており、概ね 良好な結果が得られている.またテクスチャ同士の境界 においても目立った不連続は見られず,高品質なモデル ができている.モデル作成に要した計算時間は Core i7 3.40GHzの CPU で合計 3 分程度と非常に効率がよい.

6. 結 論

本報告では、桟橋の維持管理支援を目的とし、構造物 のSfM/MVSによる高密度3Dポリゴンモデルをテクスチ ャ付き簡略モデルへと変換する手法を提案し、その有効 性を評価した.今後は、提案手法で作成したモデル品質 についての定量評価を行う.また現状では処理の対象と していないハンチ部のモデル化手法の開発、及び表面積 が小さな領域のモデル品質向上等を行う.

参考文献

- 水野剣一,酒井貴洋,小笠原哲也,杉本英樹,杉山 昇:ラジコンボートを用いた桟橋下面部の点検・診断シ ステムの開発,土木学会論文集 B3, No. 73/V-2, pp.432-437, 2017.
- Schnabel, R., Wahl, R., and Klein, R.: Efficient ransac for point-cloud shape detection. *Computer graphics forum*, Vol. 26, pp.214–226, 2007.
- Vieira, M. and Shimada, K.: Surface mesh segmentation and smooth surface extraction through region growing, *Journal of Computer Aided Geometric Design*, Vol. 22, Issue 8, pp.771-792.