(47) 深層学習による活火山監視効率化に関する研究

山脇 正嗣¹・上山 晃²・中村 直人³・木川 堅司⁴・ 石田 孝司⁵・谷保 和則⁶・吉崎 皇淑⁷

1正会員 株式会社建設技術研究所 技術本部新技術推進部 AI ソリューション室

(〒103-8430 東京都中央区日本橋浜町 3-21-1) E-mail: ms-yamawaki@ctie.co.jp

2正会員	株式会社建	設技術研究所	東	京本社情報部	(〒	103-843	0 東京都	中央区日本	本橋浜町	3-21	l-1)
3 非会員	株式会社建	設技術研究所	東	京本社情報部	(〒	103-843	0 東京都	中央区日本	本橋浜町	3-21	l-1)
4 非会員	株式会社建	設技術研究所	東	京本社情報部	(〒	103-843	0 東京都	中央区日本	本橋浜町	3-21	l-1)
5正会員	国土交通省	北陸地方整備周	司	松本砂防事務	所	(〒390-	0803 長野	県松本市	ī元町1丁	一目 8	8-28)
6非会員	国土交通省	北陸地方整備用	司	松本砂防事務	所	(〒390-	0803 長野	県松本市	ī元町1丁	一目 8	8-28)
7 非会員	国土交通省	北陸地方整備	局	富山河川国道	事	務所(〒	930-8537	富山県奥	山新町2	2番	1号)

我が国は世界の約 7%を占める 111 箇所の活火山が存在する火山大国である.火山がひとたび噴火する と,噴石,火砕流,土石流等の噴火事象により甚大な被害が発生するため,定常的な観測・監視により噴 火の兆候を迅速に察知し対策をとることが重要である.本研究では,活火山監視の効率化を目的に,AI 技術の一種である深層学習(Deep Learning)を活用する方法について検討した.具体的には,気象庁が常時 観測・監視を実施している 50 箇所の活火山の一つである焼岳を対象に,深層学習モデルの畳込みニュー ラルネットワーク(CNN(Convolutional Neural Network))により,火山監視を阻害する雲や霧等のノイズ除去, 並びに噴火事象(噴煙,土石流等)を検出するモデルを構築した.その結果,活火山監視の効率化に深層学 習が有効な技術となり得る可能性を示した.

Key Words: active volcano, deep learning, convolutional neural network, noise removal, segmentation

1. はじめに

2019年現在,我が国には図-1 に示す 111箇所の 活火山が存在する.気象庁火山監視・警報センター では,その内の 50箇所を対象に火山活動を 24時間 体制で常時観測・監視を実施 ¹しており,噴火の兆 候を確認した場合,関係機関・自治体・住民に噴火 警報・予報を迅速に発表する体制を採っている.近 年では,2014年の御嶽山,2015年の口永良部島, 2018年の本白根山,新燃岳等,年単位で大規模な 噴火が発生しており,活火山の監視作業は重要な役 割を担っている.ここで,活火山の監視方法の一つ である監視カメラの利用に着目した場合,カメラ利 用時の問題点として下記2点が考えられる.

 高山部に位置する活火山では、霧や雲が発生 しやすく、冬季には雪で視界が遮られる等、 良好な監視を妨げるノイズが多発する。

② 噴煙を雲と判定する等の誤検出が生じる.

そこで本研究では,深層学習(Deep Learning)の一 種であり,高度な画像解析能力を持つ畳込みニュー ラルネットワーク(Convolutional Neural Network (以 下 CNN))を活用し,活火山監視効率化への深層学習

図-1 我が国における活火山の分布 2)(2019年3月現在)

の適用について検討した.具体的には,常時監視・ 観測対象の活火山である焼岳を対象に,雲や霧等の ノイズ除去,並びに噴火事象(噴煙,土石流等)の検 出を行うモデルの構築と精度検証を実施した.

2. 対象とした活火山監視カメラ

本研究では、国土交通省北陸地方整備局松本砂防

事務所において,焼岳の監視を行っている2種類の カメラ映像(図-2)を対象にモデルを構築した.

3. ノイズ除去モデルの構築

(1) 教師データの作成

モデルの教師データとして,表-1,図-3の内容で ノイズ除去前のオリジナル画像(正解データ)とノイ ズを付加した模擬画像(入力データ)を作成した.模 擬画像の作成には,画像編集ソフト「Adobe Photoshop」を用いて,焼岳の監視を頻繁に妨げる「雲」 と「霧」を付加した模擬ノイズ画像を作成した.

(2) ノイズ除去モデルの構築

図-4 に示すとおり、CNN により模擬ノイズ画像 に含まれるノイズの特徴を学習し、その特徴を除去 した画像を出力するモデルを構築した.また、 CNN モデルについては、初期モデルであり計算速 度が速い LeNet³⁾をベースとした.

(3) モデルの精度検証

a) 精度検証方法

構築したノイズ除去モデルについて,図-5 に示 す内容で学習と精度検証を実施した.

表-1 ノイズ除去モデル用の教師データの内容

対象 カメラ	①焼岳カメラ	②安房山カメラ	 3 安房山カメラ 模擬映像^{※1} 		
カメラ映像					
撮影日時	2018年 11月27日(火)12時台	2018年 12月11日(火)14時台 12月13日(木)9時台	2019年 1月13日(日)8時台		
撮影時間	5分間	1 分間×2	1 分間		
画質	SD 画質(720×480)	SD 画質(720×480)	HD 画質(1280×720)		
付加ノイズ	霧・雲	霧・雲	霧・雲		
オリジナル 画像枚数	60枚※2	24 枚**2	12 枚※2		
模擬ノイズ 画像枚数	600 枚 ^{※3}	240 枚 ^{※3}	120 枚*3		

※1 モデルの汎用性向上を目的に,未発生の噴煙を付加した映像 ※2 映像シーンを分けるため約5秒間隔で1枚ずつ画像化 ※3 オリジナル画像データ1枚につき10種類の模擬ノイズ画像を作成

図-3 教師データの作成イメージ図(例:焼岳カメラ)

学習方法

- ・テストデータで、学習済モデルの精度を検証
- ・精度評価指標として表-2に示す RMSE を使用
- ・精度が低い場合は各種ハイパーパラメータ(人間が初期値を設定するパラメータ)を適宜調整

図-5 ノイズ除去モデルの学習と精度検証方法

※ :フィルタ(特徴を抽出するための検出器)、 :特徴マップ(フィルタが抽出した特徴)
 ※ 図内の数値(フィルタサイズや特徴マップ数等)はサンプルであり、本数値や各層の数を変更することでモデルを修正
 図-4 CNN によるノイズ除去モデルの構成図

b) 精度検証結果

構築したノイズ除去モデルの精度検証結果を表-3, 図-6 に示す.現状のモデルにより,晴天時や曇天時における雲や霧等のノイズを除去し,噴煙部を残す理想的なノイズ除去を一部可能にしている.ただし,低画質(SD 画質)の画像ほど,精度が低くなっているため,これらの改善が今後の課題である.

表-2 ノイズ除去精度の評価指標

評価 指標	算出式			
RMSE	RMSE $(y_k, t_k) = \sqrt{\frac{1}{n} \sum_{k=1}^n (y_k - t_k)^2}$ y: 予測値 t: 正解値 n: データ数			
	 概要:ノイズ除去画像(AI 予測値)とノイ ブの無い原画像(正報値)の一番零 			
	□ ^ 0 無い 示画 像 (正 辨 値) 0 [−] 玖平 □ ② 最適値:0.0			

表-3 ノイズ除去モデルの精度

			教師データ	精度評価指標	
No.	対象カメラ	合計	訓練データ(9割) テストデータ(1割)	RMSE	
1	焼岳カメラ	600 校	540 枚	0.076	
1	(可視光)	000 12	60 枚	0.077	
2	安房山カメラ	240 枚	216 枚	0.071	
	(可視光)		24 枚	0.068	
3	安房山カメラ	120 枚	108 枚	0.034	
	(可視光) 模擬映像		12 枚	0.029	

図-6 テストデータに対するノイズ除去結果の一例

4. 噴火事象検出モデルの構築

(1) 教師データの作成

モデルの教師データとして、カメラ映像内の噴火 事象領域を学習させるデータセットを作成した.具 体的には、表-4、図-7の内容でノイズ除去モデル構 築で選定したカメラ映像を対象に、「噴煙」、「土 石流」、「対象外」の3種類の領域をラベリングし た画像(正解データ)を作成した.

(2) 噴火事象検出モデルの構築

図-8 に示すとおり、CNN により画像内の噴火事 象(噴煙・土石流)の特徴を抽出し、噴火事象の検出、 並びにその規模を出力するモデルを構築した.また、 使用した CNN モデルについては、自動運転や医療 診断等の研究開発分野で世界的に利用されているモ デルである U-Net⁴⁾をベースとした.

(3) モデルの精度検証

a) 精度検証方法

噴火事象検出モデルの精度検証は、ノイズ除去モ デルと同様の方法で実施した.精度評価指標につい ては表-2に示す正検知率と誤検知率を使用し、図-9 の算出式で噴火事象規模を算出した.

対象 カメラ	①焼岳カメラ	②安房山カメラ	③ 安房山カメラ 模擬映像 ^{※1}
カメラ 映像			
撮影日時	2018年 11月27日(大)12時台	2018年 12月11日(火)14時台 12月13日(木)9時台	2019年 1月13日(日)8時台 1月13日(日)13時台
撮影時間	5分間	1分間×2	1分間×2
画質	SD 画質(720×480)	SD 画質(720×480)	HD 画質(1280×720)
画像枚数	150 枚※2	60 枚 ^{%2}	60 枚※2

表-4 噴火事象検出モデル用の教師データの内容

※1 モデルの汎用性向上を目的に、未発生噴煙と土石流を付加した映像 ※2 映像シーンを分けるため約 2 秒間隔で1 枚ずつ画像化

図-7 教師データの作成イメージ図

^{※ :}フィルタ(特徴を抽出するための検出器)、 : 特徴マップ(フィルタが抽出した特徴) ※ 図内の数値(フィルタサイズや特徴マップ数等)はサンプルであり、本数値や各層の数を変更することでモデルを修正 図-8 CNNによる噴火事象検出モデルの構成図

表-4	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	価指標
-10		

評価指標	算出式
正検知率	AI が正しく正解値と予測したクラス数
【 最適値】 1.0	正解値のクラス数
誤検知率	AI が誤って正解値と予測したクラス数
【 最適値】 0.0	不正解値のクラス数

噴火事象検出モデルが検出した

噴火事象規模 = $\frac{$ 正解クラス (噴煙または土石流)数 写真データの総ピクセル数

図-9 噴火事象規模の算出式

b) 精度検証結果

構築した噴火事象検出モデルの精度検証結果を表 -5,図-10に示す.現状のモデルにより,晴天時や 曇天時を問わず,雲と実噴煙・模擬噴煙を区別して 噴煙のみを検出し,模擬土石流についても山肌と区 別して検出できており,実務的に適用できるレベル の精度が得られている.今後は,雪や雨等の他の気 象条件に対しても,同程度の精度で検出を可能にす ることを目指す.

5. おわりに

本研究では、深層学習による活火山監視の効率化 手法として、監視を阻害する雲や霧等のノイズを除 去するモデルと、噴火事象(噴煙、土石流等)を自動 検出するモデルについて検討した.結果として、両 モデルとも高い精度が得られ、深層学習が有効な技 術になり得る可能性を示すことができた.

今後はモデルの精度向上と併せ,焼岳以外の活火 山への適用に向け,異なるカメラ,画角の映像にも 対応可能な汎用性の高いモデルへの改良に取り組む 予定である.

謝辞:本研究で使用した焼岳の監視映像データは, 国土交通省北陸地方整備局松本砂防事務所よりご提 供頂いたものである.ここに感謝の意を表する.

表-5 噴火事象検出モデルの検出精度

	対象 カメラ	教師データ		精度評価指標				
		合計	訓練データ	1	賁煙	②土石流		
No.			(9割)					
			テスト データ (1割)	正検知率	誤検知率	正検知率	誤検知率	
1	焼岳	焼岳 150枚	135 枚	0.764	0.001	—		
1	カメラ		15 枚	0.686	0.001	—	—	
2	安房山	山 ラ 60枚	54枚	0.944	0.001	—	_	
2	カメラ		6枚	0.789	0.001	—	—	
3	安房山 カメラ 模擬映像	房山	54枚	0.830	0.001	0.931	0.001	
		00 12	6枚	0.842	0.001	0.935	0.001	

参考文献

- 1) 内閣府: 平成 30 年版 防災 白書, p.63, 2018.
- 2) 内閣府: 平成 30 年版 防災 白書 附属資料, p.4, 2018.
- Medical Y. LeCun., L. Bottou., Y. Bengio.: Gradient-based learning applied to document recognition, *Proceedings of the IEEE 86(11)*, pp.2278–2324, 1998.
- Olaf Ronneberger., Philipp Fischer.: U-Net: Convolutional Networks for Biomedical Image Segmentation, *Image Computing and Computer-Assisted Intervention (MICCAI) Vol.* 9351, pp.234-241, Springer, LNCS, 2015.