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1. Introduction

In major ports in Japan and the U.S. such as Kobe, Yokohama, Los Angeles and Oakland, shipping lines lease the
container terminals (referred to as Dedicated Terminal, DT) in order for them to be directly involved in the processing and
handling of the containers as they aim to achieve higher productivity and economies of scale. Whereas this may be
warranted in the case of a firm that handles a large amount of containers with a corresponding number of ship calls, it may
not be justified if these quantities are not sufficient, as it will have an adverse effect on costs. Over the past several years,
port charges in Japan have been consistently higher than those in other major ports. One of the reasons cited for the
increased costs is the over-investment in ports with relatively small cargo volume.

A Multi-User Container Terminal (MUT) may be defined as a terminal with a long berth that is able to serve several
ships simultaneously, which are dynamically allocated to the berth and are not always assigned to specific berth locations.
Some major container ports provide MUTs, while most of them feature DTs. Examples of the MUT are Hong Kong
Intemational Terminal (HIT) in Hong Kong, Pusan East Container Terminal (PECT) in Pusan, and Delta Multi-User
Terminal (DMU) in Rotterdam. In addition, most container terminals in China are used as MUTS, since the limited
terminal space due to a smaller construction budget has to be utilized efficiently in order to meet the huge container traffic
flow. The MUT may dramaticaily save costs in handling less container traffic in ports of Japan.

In an MUT, both deep-sea vessels and short-sea feeders are served together; therefore transshipped containers are
typically stored far from berth locations of connecting ships. The efficient berth scheduling for the MUT has been
analyzed in Imai et al.”® and Nishimura et al.” by which, the handling time for a particular ship is assumed to depend on
its berth Jocation and container-stack location in the yard, without considering the details of terminal activities. For more
realistic assumptions in those berth scheduling studies, this paper develops statistical mode]s to estimate the handling time
spent by ships in port.

2. Ship handling simulation

The main purpose of this study is to examine how the ship handling time depends on the geographic relationship
between the ship location in the quay and the container-stack location in the yard. For this, we need a handling time data
set when a particular ship is moored at a certain berth location and the ones when it is moored at some other locations.
However, it is costly and even impossible to collect such statistics by changing ship’s berthing locations physically in a
busy container terminal. Thus, we altematively develop a mode] thet simulates complicated activities of various types of
equipment being involved in handling operations in an MUT. By conducting a number of computational experiments, we
observe handling activities and collect statistics, by which we develop mathematical models that estimate the
containership handling time.

(1) Oudine of the handling simulation
The efficiency of a marine container terminal depends on the smooth and efficient handling of contamers. There are
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three basic types of container handling systems engaged in
loading and discharging operations in a container terminal:
chassis, straddle-carrier and yard crane systems, the latter

Ships

being the most popular in major terminals due to the need for ] Quay Crane -
high container-storage capacity in the yard. In this study, we Movements
assume a container terminal with yard cranes. For the yard I
crane system, there are several types of handling equipment Yard Trailer
employed such as quay cranes (QCs), yard cranes (YCs) and Movelmems
yard trailers (Y'Ts).
In such a terminal, two types of operations are undertaken: ( ; ;Ifsc(g:nmes Q
loading and discharging ships, and handling delivery tracks
that come to the terminal from hinterlands. For the efficient Stock Yard ’ Stock Yard
yard operation, the entire container storage is divided into )
two parts: one for import and the other for export. Each part Figure 1. Handling cydle for machines

consists of several blocks that are arranged by the voyage, so
that the traffic of delivery truck is unlikely to interfere in
loading and discharging tasks of ships. This enables us to put only handling activities of ships into the simulation model to
get the statistics of the ship handling time. In practice, the damage check of container is conducted when the delivery
trucks go through the gates. However, in this study, we do not take into account operations relevant to delivery trucks.
Figure 1 illustrates cycles of operations of QCs, YCs and YTs being engaged in handling ships. In the discharging
operation, QCs move containers from ships to Y'Ts, while YT carry containers from the ship-side to YCs in storage areas.
YCs move containers from YT to container blocks. The loading operation will be carried out in a reverse order after
discharging,
The number of QCs assigned to a ship depends on its handling volume. In principle, two YCs will be assigned to the
handling job of containers by a QC. Four YTs are engaged in the container delivery to the storage area from a QC, each
operating a shuttle service between aQC and a YC.

(2) Simulation model

The simulation mode] of the handling operation is implemented by a commercijal simulation tool for discrete systems,
AutoMod, which deals with both physical and logical elements of a system. AutoMod offers advanced features allowing
users to simulate complex movements with consideration of the velocity of handling equipment such as QCs and YCs.

The model mainly consists of three components: ship arrival/departure sequences, discharging ships and loading ships.
The entire process is as follows: A present job state of QC  at berth i is denoted by a variable g(; j) ranging from 0 t0 2. A
value O defines QC ; at berth i without handling tasks, whereas values 1 and 2 imply discharging and loading states,
respectively. A present job state at berth 7 is denoted by a variable f{i) having O or 1. A value O defines no ship moored at
berth i and consequently results in no handling job, whereas a value 1 implies discharging or loading state. As the variables
are global, i.e., they are independent from any simulation tasks involved in the system, any states of events in the
simulation run can be monitored whenever the values of the variables change.

Ship arrival is assumed to follow the exponential distribution.

The following is the detailed simulation procedure:

Step 1. Set the simulation run time. Let £ (7)=0 for all the berths, and set g(i, /)=0 for all QCs.

Step 2. Keep looking at all QCs at all the berths until one of them makes a change in the handling state.
Thereafter, if there is an empty berth (fi)=0), go to Step 3. f QC j at berth i changes its handling
job from discharging to loading, go to Step 5. If QC j at berth  completes the handling for a ship,
go to Step 6.

Step 3. Ifno unprocessed ships are available, go to Step 4. Otherwise, get a ship to start its discharging at
empty berth , setting £ ()=1 and g(i, /)=1 for all QCs at berth i. Go to Step 2.

Step 4. Ifno ships are being processed in the terminal, stop the simulation. Otherwise, go to Step 2.

Step 5. Set g(i, /=2 and go to Step 2.

Step 6. Set g(i, )=0. Set f()=0 if a ship at berth i completes the handling and departs from the terminal
(g(i, /=0 for all QCs at berth i ). Go to Step 3.

(3) Assumptions for simulation
‘We conduct numerical experiments by the simulation model for the foliowing two cases:
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Model A : Two-berth simulation Table 1. Distribution functions for container

Model B : Four-berth simulation handling machines

The input data used in the simulation contain the Full container | Empty container
handling time for machines (QC and YC) and the Avg Avg
interval of ship arrival. The distributions for those were k (min.) k (min.)

obtained through our survey in the port of Kobe. Ships Dischargingby QC| 16 08 15 0.7
arrive with an exponential interval and the machine Loading by QC | Normal| 0.8 35 06
handling time per container follows k-Erangian and YC 19 12 6 09
normal distributions as shown in Table 1. YTIs run
straight at 15 km/h and tum at 5 km/h. When passing
each other, they slow down. . .

The number of containers loaded to and discharged Table 2. Number of machines and handling

from a ship ranges from 300 to 500, following a containers for target ships

uniform distribution. Two QCs are engaged in loading S

and discharging containers to and from a ship, sharing p pame

containers evenly. Containers for each ship are stored at AM AR EM AC | TK | SE

arbitrary stack areas. Number of QCs 21211121142
Number of YIs perQC | 4 3 4 4 4 | 4

(4) Verification of the reappearance of actual Number of Containers {366 | 318 | 79 1 408 | 42 | 410

sitnation

To verify the reappearance of actual handling
situation, we compare the handling time obtained by
simulation with actual handling time data from the
handling with two berths in the port of Tokyo under the
same condition in terms of the number of QCs and Y'T5,
the number of containers and the storage pattem of
containers for target ships.

Figure 2 shows the handling times from the actual
data and those from the simulation model, whereas
Table 2 reveals the number of machines and the number AM AR EM AC TK SE
of handling containers for target ships. The percentage Ship name
shows the error between actual handling times and
those computed by simulations, which is defined as:

-3.7%
+4.3% —9.1% +3.2%

E;\ctual data
M Simulation

Handling time (Hours)

Figure 2. Verification of the reappearance of actual
situation by simulation model

Simulation output — Actual data N
Actual data

Error(%) = 100 0]

Except for ship TK, the error is less than 10%. For ship TK, the gap in time is 15 minutes. Those errors are relatively
small; therefore, the simulation model reflects the actual situation.

3. Estimating the ship handling time by multiple regression model

By the ship handling simulation, we are able to measure the time spent in a handling operation of a particular ship. With
all the handling times observed for the ships involved in the system, we develop a multiple regression model that estimates
the handling time, taking into account the factors that might influence on the time.

(1) Data
We provided ten different seed sets for random numbers to generate the ship amival and machine cycle times without
wait. The number of YT assigned to one QC ranges from 1 to 5. The terminal operation is simulated for three days.
Having chosen the handling time as the dependent variable and the following three elements as independent variables:
the number of containers handled for a ship, the number of YT, and the distance between the ship location in the quay
and its dedicated container storage area in the yard, we performed the multiple regression analysis.
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(2) Multiple regression model

From some case studies, the best coefficient of Table 3. Estimating handling time by multiple
determination is obtained and the results of rtest and regression model
F-test are significant at a 0.05 level, when all the
variables are logarithmically transformed. Those results Dependent variable y : Ship handling time
are shown in Table 3. Partial

The coefficients of determination for models A and B In‘;dﬁ:lr:iesm regression | #-value
are 79% and 88%, respectively. The F-value is more coefficient
than 2.605 for both models. For both models, the partial Model A R’ Constant 279 582
regression coefficient for the number of containers Degrees of 0.791 x 0.79 9.81
handled is positive, while the one for the number of freedom | Fivalue x -0.60 4462
YTs is negative. Thus, the time increases as more 593 695.8 P 0.01 0.29
containers are handled and less Y'Ts are employed. This R Constant 171 231
result seems appropriate. Model B | o 075 620

The partial regression coefficient for the distance Degreesof | a2 : :
between ship and container locations is positive for both ﬁe:;i:m £value cd 0.7 4084
models, justifying the models. The value of partial 4582 xs 029 1678
regression coefficient for model A, however, is nearly %, : Number of containers handled, , : Number of YT,
zero; therefore the distance has a small influence onthe | x, : Distance between ship location and container stack
time. The value for model B is greater than for model A.

The reason is that as model B has more berths than
model A, longer trips of YT are very likely.

The ¢-values for the number of containers and the number of YT5 are greater than 1.645 and the result of #test is
significant at a 0.05 level. The r-value for the distance in mode] A is less than 1.645 and the result of #-test is not significant
at 2 0.05 level. However, the result of #test in a larger terminal, i.e., model B, is significant at 2 0.05 level.

4. Estimating the ship handling time by the neural network

In aDT, aset of YT is usually assigned to a specific QC until the work is finished. However, another assignment seems
advantageous: a trailer comes to a container-stack point in the yard after receiving a container from a QC, then it goes to
the next stack point to receive a container for export and proceeds to another QC under loading operation. Such a dynamic
YT routing may reduce the YT fleet size without increasing the entire dwell time of ship in port. Nishimura et al.? propose
the dynamic YT operation in an MUT. In the dynamic YT allocation they proposed, if a ship is allocated to a quay
location far from its container storage, YTs might be assigned to some sophisticated tours with a different itinerary.
Consequently, the regression model may not be adaptable for the dynamic YT assignment, especially in the case of the
multi-trailer system where a container does not necessarily
trave] directly from its ship to the allocated storage, and
vise versa. Therefore, the travel time may not have a
positive association with the direct distance between the
ship location and the containers storage.

In order to cope with the above issue, we next develop
another estimation model by employing the neural
network, which is widely applied for the optimization and Inputs
pattem recognition problems. Predictive skills of the
neural network and the multiple regression models are
compared using outputs of simulation mode] B. We
examine the neural network model by comparisons
between the neural network and the multiple regression
models in terms of estimation quality.

Supervised learning

Desired
OutPut(s)

Output(s)

Inputs Output(s)

(1) Neural network approach

Neural networks are different from conventional
programs in the sense that they leam to solve programs.
Leaming in neural networks takes place by adjusting Figure 3. Neural network learning
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weights such that the final set of weights can map

inputs to the output(s). As shown in Figure 3, there are Hidden Layer
two ways of adjusting the weights: the supervised and (Second Layer)  (Third Layer)
unsupervised. In the supervised leaming, the network is

presented with both inputs and desired outputs. Input Layer
Therefore, the network can compare its results with the (First Layer),,
desired outputs and minimize the emor. In the
unsupervised leaming, the outputs are not defined and
the network tries to classify the inputs according to the
features inherent in the inputs. Supervised neural
networks are the most common for the time series
prediction.

Neural networks can also be classified according to
the direction of information flow from the input layer to
the output layer. This flow is either feed-forward or
feed-forward and feed-backward. The latter is called
“bi-directional” or ‘“recumrent’. In bi-directional
networks, the states of neurons are simultaneously
determined. On the other hand, in feed-forward % Ioputto thneuronin th
networks, the inputs are fed into the network and the ; Output from Jmmnhi:hyer
output is determined in passing through the system. ‘:ﬁ : Weight vector comectod between ith neuron i - 1¢hlayer

Figure 4 illustrates the feed-forward network used in and jth neuron in fth layer ‘
this study. The neural network model we propose
consists of three input units: two hidden layers and one
output unit. Input signals correspond to three variables:
the number of containers, the number of YTs and the
distance between the ship location and container storage. The model, therefore, has three neurons in an input layer.
Input variables for each layer can be defined as follows:

Figure 4. Feed-forward network model

@

2. WyYpy - Otherwise

1;, if the 7 thlayeris an input layer
X =
ieNR,

where ; is the input to the jth neuron, and NR, represents the neuron set on the th layer In Figure 3, the inputs are
weighted and sent to the processing neurons in the next layer. At the processing stage, each neuron sums its weighted input,
and classifies it according to a transfer function and then sends its output to all hidden neurons in the next layer.

During the training stage, the back propagation calculates the differences (errors) between the actual outputs and the

target samples, and then it propagates back these errors from the output layer down to the input layer.
The total squared error can be described as

E, (wy) = %(op -D,)? 3
E(wy)= Y E,(wy) @
peDT

where the index p ranges over the set of input and target pattem pair, O, denotes the actual output value y,; for data pattem
D, D, the pth target pattem, E,(wy;) the error on data pattem p, DT the data pattem set, and E(wy;) the total error of the entire
set for data pattem.

The network uses this error information to organize its weights. Thus, the training’s objective is to minimize the total of
squared differentials between the actual outputs and the targets by modifying the weights.

(2) Back propagation learning algorithm

The back propagation feed-forward networks ” with supervised leaming rules are the most popular and useful for time
series forecasting. The back propagation calculates the error signals from the last layer by back propagating them along a
path of the steepest decent in the network. There are several ways of adjusting the weights based on the above calculated
network errors. The back propagation employs an optimization method called the gradient descent method mapping the
inputs to the outputs. The leaming rule employs a back propagation procedure to update the weights.
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The leaming rule is defined as:

W, i=w’v(r)
where 7 is the leaming rate and r is the training cycle.
The change vector in the weight between neurons ; and ; could be expressed as follows:

OE, (wy) _
W =04 Y1

If the rth layer is an output layer,

Dy

ox,

(]

5 =~(yy—Dp)

and if the rth layer is a hidden layer,
Oy
5, =—~ S, e Wat s
g axxj ks%mtﬂk t+1jk

where k represents the neuron in the (#+1)th layer.
The change of J;can be calculated backwards by the

&)

©)

O

®

back propagation using egs.(7) and (8). Weight vector wy; is 48
updated by eq.(5). Various successful applications using this ol R%=0.790 F —value=960.6

method have been reported.
3% ©
(3) Learning parameters
All data sets are normalized into analog (0-1) or binary
(0/1) type. This is necessary, since every neuron in the
hidden and output layers of the back propagation employs a
transfer function ranging from 0.0 to 1.0. The normalization
is done by the following equation »,
B - B min 6 b

A=—" 9
Bmax—Bmin ()

30 §

24 ¢

18 ® ® )

Estimated handling time (Hours)

where B is a raw data set and A is a normalized input. 0 & 12 18 24 30 3
There are nine and 17 peurons in the second and third Obsarved handing time (Hours)
hidden layers, respectively. Leaming rate » is set to 0.9.

42

48

The initial weights for each network layer are generated by a Figure 5. Correlation between observed and

uniform distribution ranging from —1.0 to 1.0. The network
is trained by randomized starting weights for a maximum of
10,000 iterations.

The sigmoid functional form, which is the most popular

network with training data

estimated handling time by neural

for time series forecasting, is used as the transfer function.
The sigmoid function is defined by eq.(10).

x,, if the sthlayeris an input layer
Vi = _ , otherwise {10
1-+exp(-x,)

Number of ships

oy

o

Then, in eqs.(7) and (8) is transformed to eq.(11) ¥ ~°.

30~36 4
36~42

0t
12
12~18
18~24
24~30
42~48
48~54 |
54~60 |

ayt. Observed handling time (hours)
g

o = Y=y an
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(4) Training results
The neural network model was coded by C language on a SUN SPARC-64GP (275MHz) workstation and was linked
with the output of the terminal handling simulation in order to train the network.
There is a data set stretching over three days that
represents a continuous updating of the leaming phase. In
order to estimate the handling time, we use two training 72

dat;,isgess Ifegemﬂﬁ ggﬁ‘ﬁm (S::fesl;iﬁon between the Multiple regression model
estimated and observed handling times, showing the ;é % (R=0870 Fvalus=73536)
effectiveness of the proposed neural network model. The % 48 &

estimated time tends to be a little shorter than the observed £

time. There is a big gap between them, especially when £ 6t

the handling time is long. Figure 6 shows the number of 2 FEE
ships in training data by class of handling time with an Tl T L

interval of 6 hours. There are fewer ships with the ] £ pr: .

handling time over 30 hours. The relative frequency of 4,,%, *

this class accounts for roughly 10%. This may result from w12y *

few observed measurements in this class of the handling o

tme. 0 12 24 6 48 60 72

The coefficient of determination R* is 79%. The

F-value is greater than 3.84 and is significant at a 0.05 Observed handing time (Hours)

level. 72
Neural network mode!
(5) Comparison between the multiple regression and P 60 (R=0.766 F-value=3605.5)
neural network models 2
With the weights obtained in the neural network = a8 |
leaming, we compare the result of the neural network £
model with that of the multiple regression model B. %" ag |-
The regression formulation is as follows: s . e s
5 . s
o 24 ¢
Iny=171+0.75Inx; —0.77Inx, +0.29Inx; (12) é
Iy &
In order to calculate independent variable y, we transform
eq.(11) to geteq.(12). 0 .

0 12 24 36 48 60 72

y= el x10'75 X, 07 x30‘29 13) Observed handling time (Hours)

Figure 7 demonstrates the associations between the Figure 7. Comparison between multiple regression
estimated and observed bandling times by both the and neural network models
multiple regression and neural network models.

The coefficients of determination for the regression and

neural network models are as high as 87% and 77%, 900
respectively. Both F-values are greater than 2.605 and are 800 -
significant at a 0.05 level. Observing these consequences, » 100 F
it is concluded that the neural network model is fairly £ 600 ¢
good, although the regression mode] outperforms it. This s 500
encourages us to consider a neural network model to £ :gg
estimate the handling time in the dynamic YT assignment Z .00 |
as mentioned before. . 100 |
Figure 8 illustrates the number of ships in various o s
classes of the handling time in experimental data. There 17375% % ¥§Is s8R
are few ships with the handling time over 30 houss, which ©c 22 I8 E8III 8
accounts for approximately 4%. This may result from few Observed handing time (hours)
observed measurements in this class of the handling time
like the training data. Figure 8. Number of ships in experiment data
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5. Conclusions

In this study, we developed two models to estimate the containership handling time in a terminal. Due to the lack of
observed handling times, for the estimation analysis, in a lot of different berth scheduling scenarios, we developed a
simulation model of yard operations that produced the psendo handling time, which could be used as an altemative of the
observed handling time. The past berth allocation problems employed artificial handling times as the input to the problem
concemed. We can obtain a more reasonable solution to the berth allocation problem with more realistic handling times
that are defined by the estimation models we developed.
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ESTIMATING CONTAINERSHIP HANDLING TIMES IN A CONTAINER TERMINAL

By Etsuko NISHIMURA, Akio IMAI, Bai ZHAO and Hitoshi KANEKO
Port charges in Japan have been consistently higher than those in other major hubs over several years. Part of the
increased costs is the result of overcapitalization to the port for the relatively small cargo volume. For terminal
efficiency, we have already investigated the dynamic berth allocation in a multi-user terminal, where the handling
time of a ship is assumed to depend on its quay location and container stock location. However, the time is given in
the berth allocation model without considering sophisticated operational aspects in the terminal. In this study, we
construct models that estimate the ship handling time.

AT FER—EFINICBIT R T HIOFREERBHETT L
FEARF. SHBX. BR. £FC

BADTEED VT IHIET U7 OFAEOHBUZH - T TEEEMET L T30, 20ERIZBEARDE
WEEERTE o R MSEET B, Fixld. IS ONR—ROEREBE LTI RL . SRR EDSS—ZTT
LY —EAERITEH I ENTES X 5 ARER A S —ROXFRBFAER L TBY ., T TR0
R N—AREFIEEREFT LTS, LML, ZON—ARBEETIRZ — I AR L—a D
HEHIZR L TRLT, N—RREME L 72 DIROTFRRR~DF — I T AVBEDIRMERIIRR RS
DOEFEOEEIIRFTL TR, AR TSRO BRELZE LT, 27 T HRORHMRVEERH
FREF NV EEIRT B,

—-710—



