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Application of Quasi-Newton Methods to Capacitated UE Assignment
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1. Imtroduction

The conventional user equilibrium (UE) model” is widely used to solve both theoretical and practical
traffic problems, because of the simple, understandable formulation of the model and its theoretical
principles. In a congested network, however, it is necessary to estimate the waiting time due to congestion at
bottienecks in a road network. To obtain a more reasonable description of network flow, it has been
suggested that upper bounds be placed on link flows in the conventional UE model. Such a capacitated
equilibrium model has been studied”), but has received little attention. One important reason for the lack of
attention is the underdevelopment of efficient algorithms to solve the capacitated equilibrium model.

The efficiency of the algorithm used to solve the conventional equilibrium model is crifical because most
capacitated network problems are ultimately converted into a conventional network problem without any
constraints on link capacity using some mathematical transformation. For instance, Hearn and Ribera®
proposed that explicit link flow capacities be included in an extended objective function by means of an
exterior penalty function method, thereby obtaining a sequence of conventional traffic assignment sub-
problemus, which can be solved by the Frank-Wolfe method. Inoue>” used the Frank-Wolfe method to solve
the conventional assignment sub-problems produced by transforming a capacitated traffic assignment using
an interior penalty method. Larsson and Patriksson” introduced a Lagrange term into the extended objective
function through dual representation of the capacity constraints, thereby creating an augmented Lagranoe
dual function, and they combined the techniques of Dantzig-Wolfe decomposition”, column generation”,
and reduced gradient” in an iterative augmented Lagrange scheme. Prashjer and Toledo'” reported that the
orthogonal projection method'"™ could be applied to a capacitated network assignment by restricting the
increment of path flows approaching the shortest path, as in Inoue’s scheme.

In this regard, this paper is not different from previous work. In order to integrate column generation and
penalization / dual representation of capacity constraints, this paper proposes two path-based methods for the
capacitated user equilibrium assignment problem, which is a general non-linear optimization problem with
explicit link capacity constraints, called the Quasi-Newton method. The first method, called the Quasi-
Newton method with a straight gradient, uses the gradient of the objective function directly to obtain an
improved feasible direction scaled from the second-order derivatives, and a line search is executed in terms
of both path flow and link flow. The second method, called the Quasi-Newton method with a Rosen gradient,
adopts the average cost of the paths used, which is called a Rosen oradlent1 ), to obtain an improved
direction, and the same line search is applied. Both methods are combined using the interior penalty
technigue, to achieve the capacitated equilibrium solution efficiently. Both methods are path-based and of
the Newton type, but they differ in feasible direction and step size. They are used to solve the capacitated
network assignment problem that augments knowledge of a congested network. Numerical experiments are
used to confirm their characteristics and usefulness.

When link capacity constraints are not considered in an equilibration procedure, Quasi-Newton methods
provide excellent path-based solutions to the convent;onal UE assignment problem, which still include the
disaggregate simplicial decomposition algorithm® and the orthogonal gradient projection method'"'?. Unlike
the link-based Frank-Wolfe method, where only one shortest path is used in every OD pair, the path-based
Quasi-Newton methods assume that multipie shortest paths might exist in every OD pair, and rationally
disperse the OD flow over the paths used. These multiple shortest paths saved at every iteration facilitate
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convergence and readily provide a reference path that can be used in the equilibrium flow sensitivity
analysis'®. Quasi-Newton methods use the second-order derivatives directly to achieve equilibration and
have greater theoretical efficiency than the disaggregate simplicial decomposition algorithm. Theoretically,
Quasi-Newton methods parallel the orthogonal gradient projection method in computational efficiency
because they are all based on the Newton formula. However, since all the tentative solutions and the final
solution obtained by Quasi-Newton methods always exist in the feasible region, it is not necessary to employ
orthogonal projection, which might be difficult for a traffic engineer to understand. Moreover the proposed
Quasi-Newton methods offer alternative feasible directions, and this flexibility is useful in choosing suitabie
solution algorithms.

This paper consists of seven sections. The capacitated equilibrium model and its properties are briefly
described in Section 2. In Section 3, a penalty function is used to translate the capacitated model into an
analogue of the conventional UE. Section 4 deduces the movement direction, scaling, and step size for the
two Quasi-Newton methods. Section 5 presents the procedure used to solve the capacitated model. Section 6
solves numerical examples using the proposed methods. Finally, conclusions are drawn in Section 7.

2. Capacitated Traffic Assignment Model

Given transportation network G(A, N), where A and N are the sets of links and nodes, respectively, each
directed link acA is associated with a positive travel time £,(x,) as an increasing function of link flow x,.
Also C, represents the capacity of link a. W is the set of origin-destination (OD) pairs, such that for each pair
we W, there is a given traffic demand ¢”. The capacitated user equilibrivm assignment problem is formulated
as follows:

minimize Z f t,(x)-dx (1a)
subjectto »_ f* =" YweW (1b)
x,=) > f-64 VaecA (1c)
x, Lc, VaeA (1d)
r=0 VkeK",weW (le)

where f.” denotes the flow on path & within OD pair w and K is the path set within OD pair w. 5 =1 if link

a belongs to path & for OD pair k; otherwise, 5}, =0.

This problem becomes the conventional UE assignment if the link capacity constraints are dropped (1d).
Since all the path flow variables of interest are positive and the nonnegative constraints (1e) are not binding,
no negativity in terms of path flow may be omitted hereafter without affecting the assignment solution. The
positive path flows are acquired via column generation, as illustrated in Section 4. In this study, the path set
includes only the positive variables, i.e., the paths used.

Consistent with the necessary and sufficient conditions of optimality, the equilibrium condition for every
OD pair is stated as

Dt +p) 8% =17 if [ >0

vk, w 2
Dt +p)Sh 2T i £ =0

where 4, is the Lagrange multiplier of the link capacity constraint on link a, r" is the shortest path travel
time within OD pair w. g, is the Lagrange multiplier of the corresponding equation (1d), and is positive if the
equation is active and zero otherwise. J,, = 1 if link a belongs to path k; otherwise, &, = 0. The solution of
the capacitated UE assignment model is considered to have the characterization of a Wardrop principle when
the travel time is articulated in terms of running and waiting times. This generalized travel time is, in fact,
the cost that individual travelers in a congested network generally seek to minimize. The waiting time or
queuing delay is equivalent to the Lagrange multiplier associated with the capacity constraint on a given
link*¥. Then, the equilibrium flow pattern and generalized time over a network can be obtained once
equations (1a)-(le) are solved.
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3. Integrating Capacity Constraints into the Objective

It is desirable to apply some useful properties of the conventional equilibrium model to solving the
capacitated traffic assignment problem. This study tries to utilize some familiar knowledge, such as the
shortest route search and the all-or-nothing load of traffic. For this purpose, capacity constraints are
incorporated into the objective function, thereby obtaining an extended objective function with additional
penalty items for every link. Consequently, a barrier function” is defined with respect to link a.

C, =

% 3)

v, (x,) =—log

a

Let y (> 0) denote a penalty parameter, then an extended objective function is obtained:
1) =Y [ 00 dry- Y wax)
=Y [ @ +r-v,(0)-dx

@
=Zf‘{ta(x)+ }-dx

The capacitated traffic assignment problem can be transformed into an analogue of the conventional UE
assignment, by extending the objective function. Alternatively, the following model can be solved to
approximate a solution of the capacitated model (1a)-(1e).

4
c,—x

minimize z(X,y) (52)
subject to Zk F=q" vw (5b)
X,=3 Y [ 6 Va (5¢)

Setting penalty parameter y (¥ > 0) to have decreasing values produces a series of optimization problems.
As y approaches 0, the solution of the link flow vector x={x,}, converges on the optimal solution of the
original problem. In parallel, the penalty item (y-/.(x)) added to the link cost function is associated with the
Lagrange multiplier for a given penalized capacity constraint, and is interpreted as the waiting time at the
link exit. The relationship between the penalty item and the delay is explicitly described by the following
relationship:

(6

M, = lim
y=0" C, Xa

Since the model can be regarded as a conventional UE problem with the augmented cost function 7, (x) =
LX) + - wi(x), existing methods can be used to achieve the equilibrium flow, such as the Frank-Wolfe
algorithm™”, or the orthogonal gradient projection method'”. To obtain a quickly converging accurate
solution, and to facilitate operation of the algorithm and understanding, this study presents two feasible
descent direction methods for solving equation (5), which originate from the Newton method and column
generation.

4. Alternative Quasi-Newton Methods

With respect to the flow vectors of the paths used by traffic, the proposed methods solve equation (5)
iteratively from a feasible point to an improved feasible point. Given a feasible point, or say path flow vector
f”, a direction Af" is determined such that for sufficiently small A (1 > 0), the following properties are
satisfied: 1) £* + 4 A f” is feasible, and 2) the value of the objective function at £” + 1 Af"is better than that
at f". After such a direction is obtained, one-dimensional optimization is executed to determine how far to
proceed along Af ”. This procedure leads to a new feasible point f "*1 and the process is repeated until
convergence.

£ = £ ) ALT (7a)
X=X +AAX" (7b)
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Figure 1 shows that a convex objective function of traffic assignment is defined over a feasible region in
terms of path flows. In the unconstrained minimization case, the optimal solution can be represented by the
lowest point on the objective function, where the gradient vector becomes the zero vector. For constrained
minimization in traffic assignment, however, it is possible to have a minimum where the gradient vector does
not become the zero vector. The shaded area in Figure 1 is the feasible region. When the minimum point
exists on the boundary of the feasible region, all the elements of the gradient vector are greater than or equal
to a constant for each OD pair, compatible with the Wardrop principle. Remembering that the gradient of the
objective function represents the vector of path trave] time in the domain of path flow, we conjecture that the
constant for each OD pair is obviously equivalent to the shortest path time within that pair. The non-
uniqueness of path flow signifies that the feasible region is uncertain with respect to path flow. In path-based
methods, however, the uniqueness of the path travel time vector can be used to find a descent direction that
leads to an efficient solution algorithm due to utilization of the second-order information of the objective
function.

z(f)

Figure 1 Optimum of capacitated UE assignment

Let ©(f) denote a path travel time vector, which is a gradient of the objective function (5a) in the domain
of path flows, and t'(-) denote its derivative. According to the Newton formula, the direction of improvement
along the path domain becomes

A =-Jedmy -t Jean]! ®)
“From this equation, the direction of movement in the domain of link flows can be readily obtained through
their linear incidence relationship, i.e.,
AX" = A A" ' )
where A = [§,], is the link-path incidence matrix. Consequently, it is critical to determine the direction of
movement and the scaling factor, which are expressed by the first and second terms on the right hand side of
Equation (8), respectively, and step size A in Equation (7).

Note that in the standard Newton method, the step size is assumed to be one. However, here, a proper step
size A, which does not exceed 1, is adopted to guarantee that the link capacity constraints are not violated.
Therefore, the methodology described in equations (7) and (8) belongs to the framework of Quasi-Newton
methods. The different strategies used to solve the model can be adapted to different policies for gradient and
step size.

4.1 Moving Direction

In moving toward the optimum, the flows on all the paths used decrease in the direction expressed in
Equation (8). The decreased flows on the paths used within each OD pair correspond to the increased flow
on the shortest path. The shortest path £**, if it does not exist in the current path set, will join path set K"(n)
in the next iteration, i.e., K*(n+1):= K"(n) U k™*. According to the conservation of flow in every OD pair, the
sum of the decreased flows must equal the increased flow along the shortest path. The change in path flows
can be described as

af” = e - B jean ] (102)

where E is an identity matrix of appropriate dimension.
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Note that Equation (10a) contains only the initially updated path flows, exclusive of the coming shortest
path. The path flow along the shortest path that now joins the path set can be expressed by summing the
decreased flows.

INARCOEEEDI AL (10b)
keK¥(n)

The combination of path flows described in equations (10a) and (10b) will be used to update the path
flow vector using Equation (7).

In contrast to this strategy, in which path flows rush into the shortest path only, the second strategy
assumes that the change in path flow depends on the average cost level within every OD pair, which is
verified as a Rosen gradient in Inoue'. Specifically, the path set is first augmented by adding the shortest
path, K¥(n+1):= K"(n) U k**. If the cost of the path concemned is higher than the average cost within the
given OD pair, then its flow decreases; if the cost of the path concerned is lower than the average cost within
the given OD pair, then its flow increases. There is no change if the costs are equal, i.e.,

L Y E e (n

AR" = £ (") ——
K”(T’l—!—l)l keK”(n+1)

where E is an identity matrix of appropriate dimension, and IK*(-)I denotes the number of paths within pair
K"().
4.2 Scaling

The two resulting directions must be scaled in order to coordinate the directions of the path flows used
within the OD pair and the directions among different OD pairs, which are expressed by the second term on
the right hand side of equations (10) and (11). The scaling is determined by the derivative of path costs,
which is in fact the Hessian matrix of Equation (5a), and is a diagonal matrix due to the assumed irrelevance
of paths. In the first strategy, the Hessian is defined in the domain of used paths exclusive of the shortest
paths, and its diagonal elements are calculated by

2
Ol 7oy —82.0% V=" Yw
(%” ) : ach
where 7, denotes the derivative of the augmented travel time function of link a.

In the second strategy, the Hessian is defined in the domain of used paths inclusive of the shortest paths,
and its diagonal elements are replaced by the inverse of the corresponding OD flow®, which could decrease
the overhead associated with the inversion of the Hessian matrix.

% z(f) -
@
4.3 Step Size
In the standard Newton method, the step size is defined as 1 in the unconstrained optimization. For traffic
equilibrium problems with demand conservation, non-negativity of decision variables, and capacity
constraints, a step size of 1 might be inappropriate, because the feasibility of the solution might be violated.
For this reason, the step size should be restricted using various constraints and optimized by the line search

method.
First, the non-negativity of path flows requires

(") vk vw

Ot e 8V 20, VEke K, we W (12a)
which is rewritten as
imhs—Af"w, VkeK”, we W (12b)

k
In terms of all the OD pairs, the step size of the flow on every path must be coordinated and the optimal step
size for all paths must satisfy the following relationship.

. 500 e
Aot = mn{g{g{— A]ikw ‘Afk < O}, 1} (12¢)

Second, we try to decide the step size required by link flows in the sense of mathematical programming.
In terms of the current link flow vector, x”, the second-order approximation of the function is expressed as:
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2(X) = z2(x") + A-AXT ~z’(x”)+%/12 SAXT L Z(x™) - AXT (13a)

where, A is the feasible step size, Ax is the vector of increased link flows, and z/ z” are the first and second
order derivatives of objective function (5a), respectively. Substitute

Ax" = A A7 (Incidence equation of moving flows between a link and path)

and
2"(x) =t (The second derivative equations of the function)
into Equation (13a), then
n by 1 2 2 7
(xyzzxX")Y+A- ) |Ax, -1, . A Ax; -t . (13b)
A NS Sy A

Due to the optimality condition, the step size of link flows may be calculated by solving the equation
z'(A) =0. With respect to each link flow, the step size must simultaneously coordinate and again must not be

larger than A, Accordingly, the feasible link flow step should satisfy

. Z AAxa.t-a
Agge = 1D _ZL‘Z—‘[_‘—,, Z‘palh (13¢)

aed 2 a

For the capacitated network model, the step size should also be limited by the link capacity constraints.
Third, it is necessary to derive the feasible step size subject to the capacitated network flow. The

corresponding direction of movement of link flow can be determined using Equation (9). In order to keep the

solution within the feasible region, the step size A must satisfy the following inequality.

x"+1-Ax" <¢ (142)
Negotiating the possible step size in every link flow and every path flow, the optimal step size becomes
i = min[min{ e e ax, > o}, Aﬁnk] | (14b)
acA Axa

This study has presented two strategies for determining movement direction and step size for the Quasi-
Newton methods stated in equations (7) and (8). The first strategy puts flow on the shortest path; the second
increases the flow on the lower cost path and decreases the flow on the higher cost path. The different
strategies lead to their own optimal step size A", thereby creating two path-based methods. Unlike link-based
methods like the Frank-Wolfe method and the simplicial decomposition method, path-based methods take
advantage of the availability of information on the second-order derivative of the objective function and
column generation, where the flow on used paths is saved during iterations. The path-based methods are
based on the Newton formula (8), which is superior to Frank-Wolf type methods in convergence and
accuracy. The weakness of path-based methods is that they require a large amount of memory, both to save
path information and for calculating the second-order derivatives for scaling or step size.

Unlike our step-restriction scenario, Prashjer and Toledo'® proposed a different algorithm, in which the
flow on used, but non-shortest, paths is shifted to the shortest path for a capacitated UE model involving the
orthogonal projection method, in order to ensure that the flow on the links on the shortest path does not
violate capacity constraints. It appears to be difficult to determine which path, and how much flow affects the
critical link of the shortest path, since the flow at the critical link is a composite of the flows of several paths.
Furthermore, it is difficult to realize the feasibility of the solution in Prashjer and Toledo’s modified
projection function.

The Quasi-Newton methods and the augmented Lagrangean dual algorithm® have different penalty
techniques and solutions compared to conventional traffic assignment sub-problems. In the augmented
Lagrangean dual algorithm, Larsson and Patriksson combine exterior penalty methods with Lagrangean dual
schemes to transform the capacitated traffic problem into a sequence of conventional sub-problems. The
main difference between these methods is the efficiency of the calculation process used to obtain the
solutions to the conventional sub-problems, which governs the performance of the solution scheme. Larsson
and Patriksson solve the sub-problems by using the disaggregate simplicial decomposition algorithm, in
which the equilibration procedure is a hybrid first- and second-order approximation of the objective function,
called the reduced gradient method and the diagonalized Newton method. Solving the alleged disaggregate
master problem for each OD-pair might require onerous calculation, because it is very difficuit to determine
an appropriate point or say which parameter to switch from the reduced gradient method te the diagonalized
Newton method. The equilibration process of our Quasi-Newton methods adopts the second-order
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approximation of the objective function directly. The efficiency of the equilibration procedure theoretically
results in Quasi-Newton methods being able fo identify the used path set more quickly than the augmented
Lagrangean dual algorithm.

5. Solution Procedures

Two Quasi-Newton methods were developed to solve the capacitated UE traffic assignment by using first
and second order derivatives of the extended objective function, which should be incorporated into the outer
calculation loop for the interior penalty method. Figure 2 shows the flowchart of the path-based method for
capacitated traffic assignment. The Quasi-Newton inner loop, which should be placed in the outer calculation
loop for the interior pepalty method, consists of four procedures: initialization, column generation,
equilibration, and convergence. Column generation includes finding the shortest paths and augmenting the
path set to update the path set. Equilibration consists of updating the movement direction and step size to
reach a convergent state. The two path-based methods differ only in equilibration, and adopt a straight
gradient and Rosen gradient respectively. The detailed steps of the algorithm for these path-based methods
are provided below.

initialization
find shortest paths J, I
1‘ . enalty parameter
! 4 column generation pena’ty pat
reduction
augment path set ' l

Quasi-Newton
a Methods

Yes

convergence ?
Yes

No

update path set

move direction | q equilibration

l

step size
Yes i
update path & linkflow Interior Penalty outer loop

Quasi-Newton inner loop

Figure 2 Flowchart of path-based methods for capacitated traffic assignment

Initialization
e set the iteration counter n=0
e solve the shortest path problem and create an initial path set K*(0), YweW
s perform All-or-Nothing assignment and obtain an initial path and link flow
Column Generation
¢ increment the iteration counter: n:=n+1
¢ update the cost and solve the shortest path problem
s record a set of shortest paths k¥"(n) and angment the path set
set K¥(n)= K"(n-1) U k"' (n), if k" (n) & K¥(n-1); otherwise, set K*(n)= K*(n-1)
Egquilibration
o calculate the movement direction of the path flow vector
e iff”=0,and AL” <0, drop path k: K*(n)=K*(n)\k '
e optimize the step size

! K*(n) \k means that path k is excluded from path set K*(n)
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e update the flow pattern of the path and link
Convergence

w w w

. Yy i (m)~1., () . . .

o if maxz Ji SJ )[ u " ") < ¢, terminate; otherwise, go to Column Generation
Y %9 T\

Concerning the outer calculation loop used for the interior penalty method, if the penalty parameter y
becomes sufficiently small that penalty items converge on the Lagrange multiplier for every link, the
calculation should be terminated.

6. Numerical Experiments

The test network, shown in Figure 3, consists of 4 links and 3 nodes. The origin-destination demand and
link performance are listed in Table 1. The standard BPR function is used to estimate the link travel time. In
the first example, two Quasi-Newton methods are applied to the conventional traffic assignment to illustrate
their different solution strategies. In the second example, the Quasi-Newton methods are used to solve the
capacitated traffic assignment and to compare their efficiency with the Frank-Wolfe algorithm. The third
example demonstrates the diversification of path flow patterns and its potential significance.

4 Table 1. Link Performance
link 10 ¢, g

T 10 600
=600
L. e i me
3 9 g0 Jomoy=40
4

Figure 3 Network 60 400 ooy =600

Example 1 ‘

Conventional traffic assignment (without explicit link capacity constraints) can be solved using the Quasi-
Newton methods proposed in this study, where the first and second methods adopt straight and Rosen
gradients, respectively, to find the suitable movement direction. Both methods employ one-dimensional
optimization to update the step size of flow movement. Of course, in the conventional model, the line search
required by Equation (14) and the outer calculation loop used for the interior penalty method are
unnecessary. Since they advance towards the optimal point using different direction strategies, the step size
consequently differs. For convenience in describing the movement direction, Table 2 shows only the step
size and the value of the objective function when the problem is solved in 5 iterations and termination
criterion ¢1is set at 0.001. Although both methods have the same values for the objective function, their step
sizes differ at the same iteration. The same phenomenon was verified in other examples. The proposed
Quasi-Newton methods improve the feasible solutions although they use different calculations.

Table 2 Comparison of two Quasi-Newton methods in conventional UE assignment
Iterations Quasi-Newton with Straight Gradient Quasi-Newton with Rosen Grandient

Step Size Objective Step Size Objective
1 0 0
2 0.02160 21974 0.04320 21974
3 0.02937 21727 0.05875 21727
4 0.03115 21721 0.06230 21721
5 0.03121 21721 0.06241 21721

Example 2

In the second example, the capacitated traffic assignment problem is solved by Quasi-Newton methods.
Initially, the penalty parameter yis set at 1000, and is reduced at the rate 0.1 (¥ := 0.1p); the termination
criterion ¢ is set at 10™. The initial feasible solution is obtained by Daganzo’s technique'®, where a
sufficiently large capacity is set first and the Quasi-Newton inner loop is repeated with decreasing link
capacities until every link capacity equals its original value. A detailed explanation can be found in
references [2-4]. The link flows of the capacitated UE assignment are shown in Table 3; the link solutions of
the conventional UE assignment are included for comparison.
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In the capacitated model, congestion occurs at links 1 and 3, which have delays of 5.57 and 33.15,
respectively. At a congested link, the travel time is expressed as the sum of the running time and the delay.
The difference between the capacitated and conventional models is in their link travel times, especially for
congested links. For example, for link 3, the conventional model predicts a travel time of 12.30, while the
capacitated model predicts a running time of 10.35 plus a delay of 33.15 caused by the saturated capacity at
link 3. Another difference between these two models lies in the relationship between the estimated link flows
and link capacity. As can be seen in Table 3, the capacitated UE model never provides estimated link flows
that violate the link capacity constraints, while the conventional UE mode] allows the estimated link flows to

exceed the corresponding link capacity.

Table 3 Link solutions for the capacitated and conventional UE problems

Link Capacitated UE Conventional UE
No. Capacity Flow Running Time Delay Travel Time Flow Travel Time
1 600 600 11.50 5.57 17.07 882.11 17.01
2 500 200 17.07 0 17.07 117.89 17.01
3 800 800 10.35 33.15 43.50 1000 12.30
4 400 200 60.56 0 60.56 0 60.00
Table 4 Path solutions for capacitated UE
Pairs Path Flow Link Makeup Running Time Delay Travel Time
Straight* Rosen**
1,2) 399.99 403.56 1 11.50 5.57 17.07
200.01 196.44 2 17.07 0 17.07
(1,3) 200.00 196.42 1.3 21.85 38.72 60.57
200.00 200.00 4 60.56 0 60.56
3.57 2.3 2742 33.15 60.57
(2,3) 600.00 600.00 3 10.35 33.15 43.40

Straight* means Quasi-Newton method with straight gradient
Rosen**  means Quasi-Newton method with Rosen gradient

In terms of the generalized path travel time, the Wardrop principle is also satisfied with the estimated path
flows, and can be verified by the path travel time illustrated in Table 4. For example, the two shortest paths
between OD pair (1, 2) have the same travel times of 17.07; the three shortest paths between OD pair (1, 3)
have the same travel times of 60.57. Two different path flow patterns are produced in Table 4 because the
two methods use completely different direction strategies.

Objective

200

100

50

Penalty parameter 0.1 Iteration numbers

Figure 4 Convergence of the Frank-Wolfe method in capacitated UE assignment

Next, we illustrate the convergence procedure of the Quasi-Newton methods and compare it with that of
the Frank-Wolfe method. Figure 4 shows the convergence procedure of the capacitated UE assignment
solved using the Frank-Wolfe method. It cannot provide a precise solution because of its known zigzag
phenomenon, which occurs at every penalty process. Moreover, the decrease in the objective value is slow
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when the penalty parameter is larger. This means the early stage of the outer calculation loop for the inner
penalty method might require time-consuming calculation. Inoue” terminated the Frank-Wolfe procedure
using a predetermined number. However, determining an appropriate upper limit is also a tricky task.
Contrary to the Frank-Wolfe method, Quasi-Newton methods provide an effective algorithm to guarantee
precise, converging solutions to the capacitated mode] with limited repetitions.

Objective

“200

200

Penalty parameter 0.1 Iteration numbers Penalty parameter 0.1 Iteration numbers

(a) Quasi-Newton method with a straight gradient (b) Quasi-Newton method with a Rosen gradient
Figure 5 Convergence of Quasi-Newton methods in capacitated UE assignment

Figure 5 illustrates the convergence procedure of the Quasi-Newton methods with sfraight and Rosen
gradients. Both methods are superior to the Frank-Wolfe method in accuracy and convergence at the expense
of path flow reservation. The method with the straight gradient is so perfect that it converges continuously
and rapidly in every penalty outer loop. By contrast, despite the high performance of the method with the
Rosen gradient, the objective value is not continuous and sometimes jumps abruptly. These abrupt changes
in the objective value occur because the movement direction generated can change abruptly when the
movement direction is the zero vector or some link capacity becomes active. The average path cost of every
OD pair in Equation (11) is originally defined by a Rosen projection and its direction finding map is not
closed. The mathematical explanation refers to [9]. Overall, the method with the straight gradient is more
efficient and more stable than that with the Rosen gradient.

Example 3

Two different path flow vectors were produced using two Quasi-Newton methods in Example 2. In fact, if
different feasible initial solutions are given, either path-based method can produce diverse path flow vectors.
In our experiments, all the path flow patterns in Example 2 can be described by the solutions in Figure 6(a).
Simple calculations verify that every path flow vector for s<[0, 200] observes flow conservation. The
functional relation of path flows in Figure 6(a) shows that path flows are not capricious, but are subject to
some intrinsic relationship. For example, we can foretell that the flow on path 1 is 400 < f; < 600, while the
flow on path 5 is 200 < f5 < 600, etc. Judging from the calculation results shown in Table 4, the case (b) in
Figure 6 corresponds with the solution obtained by the Quasi-Newton Method with straight gradient.

(a) arbitrary flow, s<[0,200] (b) extreme flow I, s=0 (c) extreme flow II, s= 200
Figure 6 Path flow patterns in a capacitated network
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Additionally, in transportation network problems, sensitivity' of link flow to OD flow is needed for
traffic control or network design. Sensitivity analysis'® requires a previous set of reference path flows, from
which a particular path flow pattern can be abstracted. Unfortunately, it is not clear how to obtain the
reference path flow pattern. For a small network, all the paths could easily be enumerated as the reference
set, but for a large network, path enumeration is unimaginable. The Quasi-Newton methods are alternative
ways to provide a reference path set for flow sensitivity analysis. For example, although two extreme points
of path flows exist in the capacitated network, shown in Figure 6(b) and 6(c), only extreme point I is usefual
for sensitivity analysis in our experiment.

7. Conclusions and Future Research

In this study, we proposed two Quasi-Newton methods to deal with traffic assignment in a capacitated
network. The methods combine the Newton formula, column generation, and penalty techniques. The first
method uses the gradient of the objective function to obtain an improving feasible direction scaled using the
second-order derivatives. The second uses a Rosen gradient to obtain an improving direction scaled using the
corresponding origin-destination demand. Both methods use a line search to obtain an optimal step size to
guarantee feasibility of either path or link flow. The proposed methods converge quickly, with high
accuracy, at the expense of requiring memory to save path information. Numerical examples verified their
efficiency and stability, as well as the usefulness of the saved path flow patterns. The Quasi-Newton method
with a straight gradient is more stable than that with a Rosen gradient for capacitated traffic assignment.

Quasi-Newton methods typically yield a satisfactory solution to traffic assignment and are superior to the
Frank-Wolfe method. The zigzag phenomenon that often occurs in the Frank-Wolfe method does not exist in
Quasi-Newton methods. When a network is heavily congested, there is a considerable difference between the
Quasi-Newton solution, in which several paths are used, and the Frank-Wolfe solution, in which only one
path is used in every OD pair. In an equilibrium network, the state with multiple shortest paths might better
describe the real world. Furthermore, Quasi-Newton methods use the second-order approximation of the
objective function to adjust the flow movement among the paths used.

The network described by the capacitated model has a capacity that depends on its component capacities,
such as the capacities of links or intersections. One future research topic is to employ Quasi-Newton methods
to evaluate the capacity of an entire network subject to component capacities that are compatible with the
existing origin-destination demand patiern.

Quasi-Newton methods form a large family and there are many other variants. For instance, the Hessian
matrix in the straight gradient strategy can also be approximated using the corresponding OD flow, as with
the Rosen gradient strategy. Conversely, the Rosen gradient strategy can be directly scaled using its Hessian
matrix if the derivative of the Rosen gradient is available. It is recommended that the OD flow be used to
approximate the elements of the Hessian matrix, since this saves the overhead associated with the Hessian.
Generally speaking, orthogonal gradient projection (with a step size of one) can also be affiliated with the
Quasi-Newton method family, on the same basis as the Newton formula. Such orthogonal projection can be
extended to the Rosen gradient sirategy and produce a new combination. In this sense, Quasi-Newton
methods exhibit much flexibility in movement direction, scaling, and step size. A detailed evaluation of
comprehensive Quasi-Newton methods is summarized in Tobin and Friesz'®.

Finally, storing and handling the vast amount of path data used in Quasi-Newton methods are still
challenging tasks for a large transportation network. The remaining task for practical applications is to
integrate Quasi-Newton methods into Dantzig-Wolfe decomposition.
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Application Quasi-Newton Methods to Capacitated UE Assignment
By Lin Cheng Yasunori lida Nobuhiro Uno

In this study we proposed two Quasi-Newton methods to deal with traffic assignment in the capacitated
network. The methods combine Newton formula, column generation and penalty techniques. The first
method employ the gradient of the objective function to obtain an improving feasible direction scaled by the
second-order derivatives. The second one is to employ Rosen gradient to obtain an improving direction
scaled by the corresponding origin-destination demand. Both methods make line search to obtain an optimal
step size to guarantee feasibility of either path or link flow. The proposed methods are of fast convergence
and high accuracy at the expense of saving path information. Numerical examples verify their efficiency and
stability, as well as usefulness of the path flow pattern reserved. The Quasi-Newton method with straight
gradient demonstrates more stability than that with Rosen gradient for capacitated traffic assignment.
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