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PARAMETER ESTIMATION OF MACROSCOPIC TRAFFIC SIMULATION MODEL"

by Chumchoke NANTHAWICHIT™, and Takashi NAKATSUJI"™

1. Introduction

According to still growing traffic demand, the advanced traffic control concepts in intelligent vehicle-highway system may
be more extensively implemented in the near future. Macroscopic traffic flow models, which are able to handle large size of road
network systems with the fast simulation time, are likely to be necessary for the research and development of new surveillance
and control techniques. Such models contain a set of parameters, which has to be estimated according to real traffic data. Since
model parameters have significant effects on the performance of the simulation, they have to be identified carefuily. In general,
the identification procedure is formulated as a parameter optimization problem, which can be solved based on iterative
comparison of model estimates with real traffic variables. Various techniques can be used for this purpose. However, the choice
primarily depends on the nature of the parameters: If they are insensitive to traffic situation, a static approach can be used. If they
possess non-linearity, a random search technique will be effective to reach the optimum value. If they are sensitive to traffic
condition, a dynamic method should be adopted.

Studies concerning macroscopic model parameters had been done by some researchers, however, there were few study on
the comparison of model parameters estimation techniques. Cremer? analysed the stability of model parameters for a small
single road section using complex integral, and designed the ranges of the values of parameters. Cremer and Papageorgiou * ) used
Box Complex technique to identify the model parameters and investigated the sensitivity of the model with respect to parameter
changes. Nevertheless, the sensitivity of parameters with respect to traffic condition was not investigated. Cremer® also
suggested the possibility that model parameters can be identified by treating them as state variables in Kalman filtering technique
(KFT), but neither formulation nor numerical experiment was proposed.

This study focuses on the comparison of those methods concerning with the parameter estimation of a particular
macroscopic model. Two methods were selected for comparison; which are Nonlinear Least Square technique (NLT) as a
gradient basis, and Box technique (BCT) as a random search technique. Next, the effects of traffic condition on the model
parameters estimation and the accuracy of model prediction were investigated. Finally, it was investigated whether the estimation
of traffic states using KFT is effective.

2. Macroscopic Traffic Flow Model

(1) Macroscopic Model
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Fig. 1: Model of Freeway Section

In macroscopic model, discreatization in both time and space was adopted in the numerical processes to reduce the
mathematical complexities. Fig. 1 shows space discreatization of a freeway section that consists of J segments. Each segment is
Ax; long,. It is divided based on the assumption that traffic state (flow, density, and speed) is homogeneous within each segment.
For stability consideration, to keep the solution within reasonable bounds, the time and the space increments As, Ax must follow
the rule that the time step, Af, must be small enough and the space step, Ax, large enough so that vehicles cannot cross a full
segment in one time step or (Ax/Af) should be more than the free flow speed” Macroscopic Traffic variables in the model were
defined as follows:

pi(k) : density of segment j at time &

v(k) : space mean speed of segment j at time &

gj(k) : flow rate at a point of boundary between segment j and j+/ at time &
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w;(k) : time mean speed at a point of boundary between segment j and j+1 at time &
ri(k) : ramp entry flow rate of segment ; at time £
s;(k) : ramp exit flow rate of segment j at time £
Macroscopic traffic model, which was first derived by Payne'?, is composed of a set of relationships among traffic volume,
average traffic speed, and traffic density. Three relationships are required. The first relationship is fundamental relationship in
traffic flow, volume, speed, and density:
qj(k)_ ( ( )*pj(k ) aij+1 k *pj+1(k)) (1)
where k& = time index;
J = section index, and
a = weighting parameter ranging 0<a <1.
The above equation reflects that the volumes are determined at the edge of each segment, so the states of both neighboring
segments may affect the actual flow. The second relationship is the continuity of vehicles that describes how density varies with
time. It was pointed out by Lighthill and Whitham® as follow:

At
pj(k+1)=pj(k)+E(qj—x—qj'*'rj_sj)(k) (2)
J
where At is time increment, and AL; is length of / section. The third relatlonshxp, which is so called the momentum equation,
defines the variation of space mean speed over time. In this study, the version of Cremer and May?, as the following, was
adopted.

At v-At palk)-p &
)= 62l (] O (0 () )] 2 2020 ®
where 7 = time constant,
x = density constant,
v = anticipation constant, and
v. = speed at equilibrium state.
Model development and validation were shown in Cremer and May®.

Presented in this paper is one of the so-called higher order continuum models, which is supposed to describe dynamic effects
in traffic flow (i.e. acceleration and inertia effects of driver to adjust their speed according to traffic condition ahead, effect of
driver to adjust their speed to equilibrium speed-density relationship, and effect of the propagation of speed difference). In Japan,
mostly, a simple continuum model, where the mean speeds are taken directly from equlllbrlum speed-density relationship, was
adopted. Deficiency in the simple macroscopic model can be referred in some literatures™ '” 'V, There are some works
concerning with higher order models in Japan such as Pourmoallem, et.al.”®).

(2) Equilibrium Speed-Density Relationship
A relationship of speed and density at equlllbrlum state appearing in the second term on the right side of Equation 3, which is
referred as to relaxation term, has a general expression proposed by May and Keller” as shown in Equation 4:

| {2]]

, C))
where iy is the jam density, vy free-flow speed and a, b are sensitivity factors which are positive numbers. In this study, the
identification of these parameters was treated as another problem and estimated separately from the macroscopic parameters. The
model parameters to be identified in this study are 7, v, x;, and a

3. Traffic Data
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Fig. 2 Bangkok Site Study Road Section

Data from two sites are used in this study. For the first stage, this study used the data collected from outbound direction of the
Second Stage Expressway of Bangkok, Thailand, between Vichaiyut Hospital and Kasemrat Hospital on Wednesday, December
3™ 1998. The total length of study area is about 6 Kilometers. The traffic data at the entrance and the exit were observed by video
camera, whereas the ramp data were observed manually. Two sets of data were collected during 14:00 to 15:30 hrs and 16:30 to
18:00hrs to cover the traffic situations of both off-peak and peak periods. These data are applied as cases 1 and 2 in numerical
experiment. As shown in Fig. 2, the road section with three lanes was divided into 9 subsections ranging from 300 meters to 800
meters. The observation points for estimation programs are the entrance and exit of study road section.
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To obtain reliable model parameters being robust for various traffic conditions, the parameters have to be identified for
extensive traffic situations. Hence the wide ranges of data from free-flow to congested conditions are required. It was almost
impossible to obtain such data of Bangkok Expressway, in which no detector was installed, from actual fields. It requires vast
efforts for data collection and compilation. In this study, the traffic data were generated by TRAF-FRESIM. The field data
collected at the study area during a certain time period were used as input for FRESIM. The outflow volume, and spot speed at
the exits were used to calibrate the influential parameters of FRESIM. The parameters calibrated are:

—  Free-flow speed: 112 kph

—  Parameter for collision avoidance time period: 1

— Minimum separation for generation of vehicles: 1.7 tenths of a second
Next the validation was performed so that the calibrated parameters were justified for the traffic data measured during another
time period. The errors between FREESIM outputs and the real observation data were small enough for both peak and off-peak
periods. After calibration and validation, extensive traffic data were produced using FRESIM by changing inflow volumes at
entrances. Simulated data are used as case 3 in numerical experiment.

In order to examine the outcome of study at Bangkok, data from another site are applied in the second stage of study. The
study data were selected from the 24-hr data observed by traffic detectors from Yokohane Line of Metropolitan Expressway in
Tokyo, Japan, during February 20™ to 26™, 1996. The study road section is between Taishi Ramp and Namamugi Junction on the
direction of heading to Tokyo. It is a 2-lane expressway with two on-ramp and one off-ramp. The length of study road section is
about 7 Kilometers, which is divided into 12 subsections as depicted in Fig. 3. Although, detectors were installed in every
subsection, the observation points applying in estimation programs are three points, which are the entrance and exit of study road
section, and a point between subsection 5 and subsection 6. The real observed data from Tokyo site are applied to the numerical
experiment as data cases 4, and 5.
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Fig. 3 Tokyo Site Study Road Section
4. Parameter Estimation Technique

(1) Nonlinear Least Square Technique (NLT)

The objective function, which is nonlinear equation, has to be transformed to be linear form using Taylor expansion
technique. Once the equation becomes linear, the least square estimation technique can be applied. The objective function, J, was
set as the error between observed variables and model outputs:

J=é(}/q'(qi"“I‘i)z‘l'}’w'(wi_wi)z) ®)
oJ -0 ,
OB,

where g is the model parameter of 7, v, x;, and «, and Y, ¥, &€ the weighting factors of both volume and the speed errors.

To minimize the error, the differentiation of objective function with respect to model parameter is set to be zero,

Normally, the reciprocals, 1/a,” and /s, are used®. They are chosen to be 10™ and 10 respectively. The objective function is
nonlinear with respect to the model parameters. By applying the Taylor Expansion to the objective function around the initial
value of parameters and neglecting higher order term, model parameters can be estimated as:
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i represents observation data at each time step and m, / indicate the individual unknown parameters. Iterations are repeated until
the changes of unknown parameters are small enough or no more improvement in the correlation between model variables.

(2) Box Complex Technique (BCT)

This method is a random search technique, which has proven effective in solving problem with nonlinear objective function
subject to non-linear inequality constraints. The procedure should tend to find the global maximum due to the fact that the initial
set of points is randomly scattered throughout the feasible region®. Unlike NLT, Box Complex algorithm does not require any
derivatives. First, a number of complex points, which are the sets of model parameters, were generated randomly. The points
must satisfy both explicit and implicit constraints. In this study, the explicit constraints are the ranges of the model parameters,
while the maximum and minimum bounds of traffic speed and volume are the implicit constraints. If the explicit constraints are
violated, the point is moved a small distance inside the violated limit. If an implicit constraint is violated, the point is moved one
half of the distance to the centroid of the remaining points. After that, the objective function is evaluated at each point. The point
having the highest function value is replaced by a point reflected through centroid of remaining points as the following equation.

X,(new) = 8(X - X,(old)) + X )
A value of & = 1.3 is recommended by Box". A point that repeats in giving the highest function value on consecutive trials is
moved one half the distance to the centroid of the remaining points. Iteration repeats until the objective function values of each
point are nearly equal. To decide whether the global optimum is reached and to investigate the effect of initial value on this
technique, the repetitions of the procedure while changing initial values were conducted.

Because of BCT have been used in the field of traffic engineering for a long time® 'V, it is applied in this study too. Other
random search techniques such as genetic algorithm could be compared for the further study.

5. Traffic State Estimation by Kalman Filter Technique (KFT)

KFT can be described as a method for combining measurement data, which are contaminated with noise. In this technique,
the estimated state is updated based on the observation data. It has been widely used in different fields such as automatic control
system, mechanical, chemical processes, telecommunication, bxology, nuclear reactors, and aeronautical engineering, etc. It can
be applied to variety types of problems including state estimation®.

The state variables, xi, compose of traffic densrcy and space mean speed, while observation variable ,y, ,are flow rate and
time mean speed at each observation point. First, in KFT formulation, Equations. 2 and 3 were treated as state equations, while
Equation. 1 was treated as the observation equation along with the following equation”:

j(k)“ j(k)+(1 a)"m() (10)

where parameter « is the same as Equation 1. In addition, the white noise errors were induced in both macroscopic model
formula and measurement process. Thus, the the state equation and observation equation become as follows:

x(k +1) = f[x(k)]+ (k) (11)
ylk) = elx(k)}+ wilk) (12)
where @ is the error covariance matrix of state equations; O= E(¢(k)¢7 (),

¥ is the error covariance matrix of observation equations; ¥ = E(y/(k)wT (k)),
x(k) = (p,,vl,..., PisViseeoPs Vu Juy?
(k) (Gorts Wartoeos D> Wi G Won N
(¢1 N N N N ,co,ka)’

W (k)= (W Wl W oW W,Z,,,V/,Zn)zky
T
At At At
I=d Ly Loy ——, 1|
lag(ALl AL AL )(k)

i indicates each road segment (i = 1 to 1), whereas mi is subscripted to specify the observation point number (mi = m1 to mn).
In case that the entrance and exit points of study road section are observed the noises can be assigned as

o0 (k) =-&(k) - o7 (k)=¢,.(k)> ¢! (k)=n,(k):
o (k)= ¢, (k)-& (k) for the points that the data are not observed,
@? (k)= &_, (k) for the observation points,

V/in(k)= gmi(k)+4qmi(k)’ Yomi (k)= G wmi (k)’
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where ¢(k) and y/(k) are referred as modeling errors and measurement errors, respectively. £ is the system noise of volume

estimation, 7 is the system noise of speed estimation, ¢, is the volume measurement error, and &, is the speed measurement error.
Finally linearize the state and observation equation around the nominal solution, ¥(k) using Taylor’s expansion.

%k +1)= flr(k)]+ S—E(x(k)— %(k)+ Co(k) = A(k)x(k)+ blk)+ T o(k) (13)
5(6) = gx(8)]+ 2 (x(- K0+ ) = o)k} k) w 8) (14)
where  b(k)= (k)] 2 %) alk) = el )] - ZE ().

A(k)=—a—f;= a(pl’vl""’pi’Vi”"’pn’vn)(kH) s
ox 6(p1,vl,...,p,,vi,...,p,,,v,,)(,‘) (ne(zs)

(k)= 28 _ {6(61»,1,wml,-u,qm,-,wm,-,u-,qm,wm)(k)}
ox B(p,,vl,...,p,,v,,...,p,,,v,,)(k) ({2

%(k) is the estimated state vector before observing new data, y(k). (k) is the updated vector after obtaining actaul measurement
variables, y(k). By following the Kalman filtering algorithm step by step, the state variables can be corrected.

Step I %(k)=f[x(k - 1)]

Step 2: M(k)= A(k -1)P(k —=1)A” (k - 1)+ TOT"

Step 3: K(k) = M(k)C” (k)|c(k)M(k)CT (k) + ]

Step 4: F(k) = glx(k)]

Step 5 &(k)=%(k)+ K()ly(k) - 5(K)]

Step 6: P(k)=M(k)- K(k)C(k)M(k)

Step 7: k=k+1 ,g0 back to step 1 untill the required time step is reached.

6. Numerical Experiments

The mainstream volume g,(k) entering the section at the upstream end, on- and off-ramp volumes, the initial conditions of
traffic situation, and the initial values of parameters were taken as inputs into each developed parameter estimation program. The
volume and spot speed at other measurement points were treated as output variables to be compared to the corresponding model
outputs. The obtained parameters then were applied to the macroscopic model to simulate the traffic situations. Simulation
interval using in study is 10 seconds, while the road segment lengths are between 300 to 800 meters. So the Ax/As <free flow
speed satisfying the stability rule as mentioned above. Various sets of data covering a large variety of different traffic situations
were run for result comparison. For Bangkok data, three cases are examined:

Case 1: Off-peak period: traffic data observed during 14:10 to 14:30 hrs.

Case 2: Peak period: traffic data observed during 16:40 to 17:00 hrs.

Case 3: Generated data by FRESIM, for comparison propose, with inflow volume between 4800 to 5200 vph, in this case
traffic situation is not so fluctuant.

Two cases of traffic conditions from Tokyo data are:

Case 4: data on Feb 21th, Wed. between 16:00 to 16:30 hrs, low density traffic and quite smooth traffic.

Case 5: data on Feb 23th, Fri. between 06:30 to 07:00 hrs, traffic density changed rapidly from off-peak to morning peak.

The results by simulation runs of macroscopic model with a certain parameter sets estimated by each technique were
compared with the real data. As the statistics principle, in order to evaluate each method quantitatively, the objective function J
and root mean square of error (RMSE) of speed and volume were calculated.

(1) Comparison between NLS and BCT
At the first stage of study, Bangkok data were used. 7and v were constrained in the

range from 0 to 9999, xwas from 0 to 200, and & was from 0 to 1, respectively. For Table 1 Initial Value for BCT

NLT, the model parameters were estimated with changing the initial values randomly of

50 sets. In BCT, three sets of initial parameters shown in Tables 1 were first applied. No. T v K a
They are taken from Cremer and Papageorgiou”, Papageorgiou, et al.'”, and Cremer 1 34.0 216 20.0 0.80
and May®, respectively. Furthermore, different numbers of complex points, which 2 72.0 28.0 40.0 0.80

3 20.4 23.9 285 095

yielded 10, 25, and 50 sets of initial values, were also examined. The estimated
parameters for each case are summarized in Tables 2. Fig. 4 illustrates the example of
parameter estimation output from NLT and BCT. It shows the estimation of v for case 1
by changing the initial values and constraints of parameters.

Experimental results indicate that, in NLT, different initial values often resulted in absolutely different solutions for all three
cases. In other words, the parameters strongly depend on the initial values. Furthermore, little improvement was gained even if
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the program started with different initial values. The possible reason is that the objective function is nonlinear and has a lot of
extreme values. Due to the nature of NLT based on derivatives, it is very difficult to escape from a local minimum once
entrapped.

As shown in Table 2, BCT produced better estimates for all 3 indices, including objective function (J), RMSE of volume and
spot speed, than NLT in all cases. The initial values had small effect on the final solutions because BCT has such a mechanism
that generates a number of random points automatically with avoiding a local minimum. Consequently, the method successfully
yielded the parameters that were substantially different from the initial values. Moreover, the calculation process of BCT is much
simpler than NLT because it does not require any derivative and matrix operations as NLT. In addition, Table 2 indicates that even
BCT was effective in estimating the parameters for the off-peak of Case 1 and smooth traffic state of Case 3, but the error indices
from model prediction are still large for case 2. By comparing three cases, the model with estimated parameter from both
techniques can predict the traffic condition most accurately for Case 3 (quite smooth traffic state) and produces the worst
outcome for case 2 (high volume and fluctuated traffic state). This feature reflects the efficiency of the macroscopic model itself.

Table 2 Parameter Estimated by NLT and BCT for Bangkok Data

10000

To investigate the above aspects more concretely, the experiments
were extended to the data from expressway in Tokyo. Data from Tokyo
site have different characteristics from Bangkok data, including road
condition, number of lanes, speed limit, and driver behavior, etc. Moreover,
data from Tokyo site are collected by traffic detectors installed in every
segment. So it is possible to increase the number measurement points in
each estimation process. Also detector data are possible to be converted to
space mean speed and traffic density for comparison purpose.

As in the first stage, it mainly aimed to find the actual optimum set of
parameters by each technique, so the ranges of parameters used in the first
stage are very wide. As a result, some estimated values of parameters
might not be practical to adopt in real world case even they are the global
optimum. In the second stage, the ranges or constraints of parameters are
more confining, e.g. 0-100 for rand v, and 0-1 for a. x was not taken into

60

Case | Case 2 Case 3 8000
Technique NLT BCT NLT BCT NLT BCT 6000 o 5
Initial Points 50 50 50 50 50 50 AP _ C L et
1 (sec) 2041 | 8.2 | 518.47 | 242,51 | 301.26 | 419.93 2000 ) Teet
v (km*/hr) 189.41 | 19.53 |1565.40 | 630.12 | 1662.08 | 740.00 A ° o e 7
x (vkp) 2000 | 17.3 | 2000 | 1509 | 200.0 13.9 0 0w % o 0 60
No. of Estimation
o 1.000 | 0.888 | 0.961 | 1.000 | 0.963 0.989 NLT-Estimation
J per number
of observed data 0.252 0.231 0.640 0.584 0.019 0.014 140
RMSE, (vph) | 323.23 | 312.51 | 572.07 | 544.04 | 68.18 45.27 :zz ¢
RMSE,, (kph) 3.85 3.85 5.59 5.37 1.29 1.15 %
v

40

20 Loy .

L3

No. of Estimation

BCT-Estimation

20

30

Fig. 4 Comparison between NLT and BCT
Estimation by Changing the Initial Value
and Constraints

Table.3 Parameter Estimation by NLT and

the estimation in this stage. It was set to be 40 vpk'". The accuracy of BCT for Tokyo Data

model should be compensated by the proper value of v, which appears in Coed Covcs

the same term of momentum equation. Besides, the model output is not so .

sensitive to the value of x (by sensitivity analysis, the most explicitly Technique NLT | BCT | NLT | BCT

sensitive parameter to the model performance is o, as it is only one Initial Points 30 50 30 50

parameter in observation equation). T (sec) 82.62| 64.08 57.06| 54.66
The results of parameter estimation for Tokyo data (case 4, and case 5) v (km?/hr) 61.86| 64.80 | 1415 13.32

by NLT and BCT are summarized in Table 3. The results show the similar " 0954 | 0924| o0614] 1.000

trend as Bangkok data, e.g. BCT gives more consistent output whitie T per mumber

changing the initial value, and more precise optimum point can be

obtail(rgledg from BCT. However, the results Iiandicate tlrl)at by narr;owing down ofobserved data| 0.382| 0381] 1172] 0945

the constraints of parameters, NLT can give almost same result as BCT. RMSE, (vph) | 143.34 | 143.10 | 24031 | 22636

While in the large space of possible parameter’s value as applied in first RMSE,, (kph) 4.21 4.32 7.73 6.64

stage of study, BCT obviously yields the better result. In addition, as same
as Bangkok data, the model prediction by optimum parameters was

justified for the quite smooth traffic case (Case 4) but it was not justified for the traffic data that includes the rapid transient period

(Case 5).
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(2) Effect of Traffic Condition

So far, the estimation is not successful in Case 2 and Case 5 as the error indices are still large comparing to other cases. Fig.5
shows the variation of spot speed observed at entrance and exit points as well as those predicted by the macroscopic model with
the parameters estimated by BCT for Case 2. Although the estimated speed and volume approximately foilow observed one on
the average, the difference in the short term is still large. As shown in Fig. 5, there was a sudden speed drop around 16:50. In
other words, traffic situations became congested after

the time point. To treat this phenomenon more precisely, 120 ¢
the data set of Case 2 and Case 5 were divided into two 100 : -
parts; before and after the abrupt change of speed. Then e .
the parameters were identified separately by BCT. Table  § 80 N TG e
4 exhibits the new parameters for each time period. 2 60
With being aggregated for both periods, the separation ;Z 40
was effective in improving both the objective function — Observed (Ent) - Observed (Exit)
and the RMSE of spot speed. Nevertheless, the RMSE 20 Model (Ent) Model Exit) [
of both volume and speed are still large compared to the 0 :
other cases. Further improvement is required. So it g § 3 £ 8 8 @& % 8 B8
«©« @ @ © © o © 0w ©w N =d

suggests that parameters should be varying in time - - - - - . - - - - -
according to traffic condition. Or else, the real-time Time
prediction should be applied to state estimation Fig. 5 Spot Speed Estimated by Optimum Parameters
problem. using BCT for Case 2
(3) Real Time Estimation of Traffic States using
Kalman Filtering Technique Table 4 Parameters before and after Speed Change (Case2)

- Up to now, model parameters were identified so that
the different between model estimated and observed Case Case 2 Case 5
data were .mﬁnimized: The traffic volume aqd speed frst st first st
were simplistically estimated by the macroscopic model. .
There was no adjustment by the observed data. Because Period 600 sec | 600 sec | Aggegatej 900 sec | 900 sec | Aggegate
of the inherence of the macroscopic model, traffic states 7 (sec) 637.62| 95.00] - 5110l 7557} -
cannot be properly identified by the model with lumped v (km%hr) 1901.79] 34093 - 35.49] 100.00] -
parameters in the case that trafﬁc .condltlon changes < (kD) 19999 200001 - 2000l 4000] -
rapidly. That is, the real time estimation may work well
in the ultimate sense. The KFT, which had been proven b 1000] 1000] - 1000) 1000] -
to be effective in state estimation problem in many 1 per number
fields, was used in this study as a real-time state | ofobservation data 0.652] 0411 0531F 0828 0564 0.696
estimation.technique based on the feedback information. RMSE, (vph) 521531 56830 545420 204.50| 189.98] 197.19
As shown in Tables 2 and 3, the data of Case 2 and Case 4
5, which still have large errors while using the optimum RMSE,, (kph) 6.17 2.9 4.84 680 480 588

parameters, were selected for this study. The traffic
states first estimated by the macroscopic model were adjusted by o .
the observed data using KFT with minimizing the difference in ~ Table S Comparison of Performance Indices between

traffic volume. Table 5 shows the values of objective function and Simple Macroscopic Model and Macroscopic

the errors of time mean speed estimated by the macroscopic model Model with KFT

with KFT comparing to those estimated by the macroscopic model

without KFT. It indicates that KFT improved the estimation J per number of

precision for both Case 2 and Case 5. Index observation data RMSE,,
Case Case2 | Case5 | Case2 | Case S

7. Conclusion
Macroscopic Model

Accuracy of traffic state estimation of macroscopic traffic flow without KFT 0.584 } 0.945 | 537 6.64
model strongly depends on the model parameter. Thus parameter
estimation problem plays a vital role in traffic state estimation.
Efficiency of two techniques was compared in this study using
various sets of data from the two different locations. The BCT can
be considered to be a superior technique comparing with the NLT in estimating the macroscopic model parameters. Its
mechanism used to optimize the objective function with constraints is quite effective. It provides better results, and requires less
computation effort than the NLT. The NLT fails to estimate the parameters if appropriate initial values are not adopted. However,
NLT estimation can be improved if the ranges of parameters are more confining.

As a lumped estimation, BCT provides the superb outcomes in the cases that traffic volume is low or traffic condition
gradually changes, but its performance deteriorates in the high volume with abrupt change in traffic condition. This means the
model parameters strongly depend on the traffic condition. One could infer that the estimation can be improved if the model

Macroscopic Model
with KFT 0.183 | 0.107 4.29 3.28
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parameters are adjusted frequently according to traffic condition. Furthermore, some researchers, such as Michalopoulos, et. al 0
and Pourmoallem, et.al.™®, proposed the macroscopic models with some model parameters as functions of traffic states. Hence
final goal should be simultaneous estimation of both traffic states and model parameters. The dynamic technique that possesses
such ability, such as KFT, should be applied to this problem. Finally, as the macroscopic model cannot capture the real condition
for some cases, especially in case of traffic condition changes rapidly, it was confirmed by this study that KFT, as a dynamic
technique, is able to improve the traffic state estimation precision.

Result of study indicates that KFT can improve the model estimation. For that reason, if the model parameters are included
into the state equation, KFT has a potential to simultaneously estimate model parameters as well as traffic state variables in real
time manner. The state variables and model parameters are adjusted every time step so that the difference between estimated and
observed measurement variables should be minimized. Consequently the traffic state prediction might be improved. However,
the integration of model parameters into state variables requires another difficulty in formulating of the matrices A and C as well
as inefficiencies in computation efforts. That will be the topic for further study
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Parameter Estimation of Macroscopic Traffic Simulation Model’
by Chumchoke NANTHAWICHIT"", and Takashi NAKATSUJI™"

Ability of Macroscopic model parameter estimation by Nonlinear Least Square technique (NLT) and Box Complex
technique (BCT) were compared using various conditions of traffic data from Bangkok and Tokyo. Experimental results
indicate that BCT is superior to NLT in parameter estimation. Moreover it was found that the parameters strongly depend
on traffic condition, or the parameters are varying with time. So the dynamic technique should be introduced to the
parameter estimation problem. Finally, the prediction of traffic state by simple macroscopic model was compared with
the real-time prediction based on feed back information using Kalman Filtering technique.
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