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The heavy rain disaster 2018 in Japan caused disruption in the transportation network. In this research we 
attempt to calculate the service elasticity of travel demand in Hiroshima Metropolitan Area as the affected 
area due to heavy rain disaster July 2018 in Japan. The elasticity is used to explore the changes in travel 
demand with respect to the expected minimum generalized cost that is expected to be improved as the 
recovery process proceeds. To achieve the goal, first, we introduce a resilience concept to reflect the tem-
poral changes of the recovery process. We then calculated the elasticity over time concerning the logsum-
based network performance measure obtained through recursive logit model. Moreover, the elasticity val-
ues used to define the stages of the system under disrupted condition. The main results show that the elas-
ticity values follow the tilde-shape, where in the emergency situation the elasticity is less elastic and more 
elastic at the adaptation and recovery stages. These findings will help policymakers to understand the situ-
ation under disrupted condition. 
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1. INTRODUCTION 
 

The heavy rain occurred in July 2018 in Hiro-
shima Prefecture caused serious damages not only on 
lives and assets of victims, but also on transport in-
frastructure. Based on the report of Cabinet Office Ja-
pan (1), the number of housing damage is 15,176, and 
the number of deaths is 109. A massive transport net-
work also occurred in this area on July 6 and 7, 2018 
(2), resulting in more than 100 transport link disrup-
tions (3), including both road and train links. Since 
transport network plays a significant role in evacua-
tion activities and good transport management, a 
quick recovery of disrupted transport links is needed 
during disaster to support emergency activities. The 
disaster would change not only transport supply, but 
also travel demand. There would be two major rea-
sons causing changes in travel demand during disas-
ter: (a) travel demand decreases because people can-
cel their trips partially due to transport network dis-
ruptions, and/or (b) travel demand increases because 
people still have to travel for example for emergency 
and recovery activities, even though transport net-
work is disrupted. This implies that the relationship 

between transport supply and demand would be 
changing over time during disaster: (a) indicates peo-
ple may tend to consider travel as a luxury good that 
can be canceled when the service level is worse due 
to disaster, while (b) indicates travel tentatively be a 
kind of a necessity good even the service level is very 
poor. In other words, borrowing the concept of elas-
ticity which has been widely used in economics, we 
could say that (a) indicates that the service elasticity 
of travel demand is relatively high (i.e., travel is rel-
atively considered as a luxury good), while (b) indi-
cates that the elasticity is relatively low (i.e., travel is 
relatively considered as a necessity good).  

In this study, we use the service elasticity of travel 
demand as an indicator representing the relationship 
between transport demand and supply. While there is 
vast literature about the elasticity as discussed in the 
next section, little study has explored changes in elas-
ticities during disaster. We argue that changes in elas-
ticities would be a useful indicator of phase transition 
during disaster since they would depict changes in 
consumers’ tastes for transportation services: trans-
portation services tend to be necessity goods particu-
larly soon after the disaster, while it would back to 
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normal after the emergency phase, or even they may 
consider the services as luxury goods since they may 
start to recognize that their road use would lead to se-
rious congestions that would have negative impacts 
on the recovery process.  

In this study, we analyze changes in service elas-
ticity of travel demand over time under heavy rain 
disaster July 2018 in Hiroshima, Japan. To facilitate 
the discussions, we use the concept of the resilience. 
The concept of resilience is defined as the “… sys-
tem’s capability to persist when exposed to changes 
or shocks” (4). System performance drops to a cer-
tain point due to disruption and then goes back to the 
normal condition aligned with the recovery process. 
We particularly attempt to depict and understand 
phase transition by exploring changes in the service 
elasticity of travel demand. The service level is meas-
ured by the expected minimum generalized cost that 
varies over time due to road network disruptions and 
transport network recovery. We repeatedly compute 
the logsum-based network performance measure 
whenever a link is recovered (also called accessibility 
in this study) by using recursive logit model.  

The structure of the paper is as follows. The next 
section presents a literature review related to this 
study, followed by the methods used to obtain elas-
ticity values during the disaster. We then introduce 
the data used in this study. The following section dis-
cusses the results, and the last section will conclude 
the paper with findings, policy recommendations, 
and future prospects. 

  
2. LITERATURE REVIEW 
 
(1) Studies related to elasticity 
 

As discussed in Introduction, we use the concept 
of elasticity to explore the relationship between 
transport supply and demand. The elasticity is gener-
ally used to measure the sensitivity of demand with 
respect to changes in price or income in the economic 
field (5). There is vast literature about elasticity of 
demand. Libardo and Nocera (6) defined elasticity as 
the percentage change in the transportation demand 
with respect to the unit fluctuation of economic price. 
Beuthe et al. (7) calculated the elasticity of demand 
in a multimodal transportation network analysis. In-
stead of using price elasticity, they defined the elas-
ticity as generalized cost elasticities, which not only 
covering the monetary loss but also the value of time 
of the travelers. Matas and Raymond (8) estimated a 
dynamic model to identify short-term and long-term 
changes in the elasticity with respect to the price, 
quality of the alternative routes and mode, and in-
come. The results show that the demand is elastic 
with respect to the level of economic activity (GDP, 

income). They also stated that the traffic is sensitive 
to time-varying pricing schemes. The elasticity con-
cept has been used in studies under disaster condi-
tions as well. Soltani-Sobh, et al. (9) used the elastic-
ity to capture the response of the travel demand to the 
changes in the travel cost while also considering the 
demand uncertainty, refers to the unknown effects of 
the trip behavior of the users following the disruption.  
Chen and Rose (10) used elasticity to analyze the link 
between accessibility, vulnerability, and resiliency. 
They created a computable general equilibrium 
framework to measure the ability of a system to re-
cover from a disruption, given that the transportation 
infrastructure plays a significant role in facilitating 
economic growth and development. The economic 
elasticity is also used in Wu et al. (11), focusing on 
the earthquake disaster in China. Other researchers 
measured both short-run and long-run elasticities of 
travel demand with respect to the cost in rail trans-
portation (12), resulting in an elastic value for the 
long-run and inelastic value for the short-run. Voith 
(12) described that the long-run elasticity of demand 
with respect to the cost is defined as the response to 
the changes in long-term impacts, such as residential 
choice, job location, and spending on private trans-
portation. In contrast, the short-run elasticity of de-
mand with respect to the cost refers to the changes in 
the modal choice or number of trips. Some other stud-
ies also focused on the elasticity of transportation and 
gasoline demand (13–15). As briefly reviewed above, 
while vast literature about the elasticity exists, little 
study has focus on changes in elasticities during dis-
aster. 

 
(2) Studies related to resilience concept 
 

In order to understand resilience phases, we review 
existing works on the resiliency of the system, which 
typically consist of several phases toward recovering 
its function. Hosseini et al. (16) conducted a compre-
hensive review on the concept, and defined resilience 
as “the ability of an entity or system to return to nor-
mal condition after the occurrence of an event that 
disrupts its state”. As summarized by Hosseini et al. 
(16), there is vast literature about resilience and its 
assessment. Table 1 summarize existing studies of re-
silience and its phases when a system got disrupted, 
and Figure 1 illustrates one typical example of phase 
transitions considered in the resilience concept (17). 
Although different names and definitions have been 
used, most of the works commonly divide the period 
into at least the following three phases. The first is 
normal phase, also called anticipation, prevention, or 
original phase, the phase before disaster occurred. 
The second is emergency phase, also called absorp-
tion, degradation or survivability phase, the phase 
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soon after the disaster where emergency activities are 
carried out. The third is adaption and recovery phase, 
also called restoration or recover ability, the phase 
sometime after disaster where recovery activities are 
carried out. 

3. METHOD 
 

(1) Recursive Logit Model 
 

In this study, we utilize recursive logit model to 
calculate the logsum-based accessibility measure. 
The model was originally proposed by Fosgerau et al. 
(17). They modeled route choice behavior as a series 
of link choice problems on a road network through 
the Bellman equation. 

Their paper proves that the recursive logit model is 
consistent with the multinomial logit model with an 
infinite route choice set. Mai et al. (26) further pro-
pose that there is an efficient procedure to obtain log-
sum values using the inverse matrix algebra, and thus 
the model framework would be suitable to the current 
study where the accessibility index needs to be re-
peatedly computed whenever a link is recovered. Fol-
lowing the work of Safitri and Chikaraishi (27), this 

study explores changes in the accessibility level dur-
ing disaster using the recursive logit model. 

In the recursive logit model, given the transport 
network structure containing a link set 𝐴, a traveler at 
link 𝑘 (∈ 𝐴 ∪ 𝑗) is assumed to choose the next link 𝑎 

(∈ 𝐴 ∪ 𝑗 ) under the random utility maximization 
framework, where 𝑗 represents the destination of the 
traveler. More specifically, the utility function can be 
defined by the Bellman equation as follows:  
 

𝑢ሺ𝑎|𝑘ሻ ൌ 𝑣ሺ𝑎|𝑘;𝛽ሻ ൅ 𝑉௝ሺ𝑎;𝛽ሻ ൅ 𝜇𝜀ሺ𝑎ሻ  (1) 

𝑉௝ሺ𝑘;𝛽ሻ ൌ  𝐸 ൤ max
௔∈஺ሺ௞ሻ

ቀ𝑣ሺ𝑎|𝑘;𝛽ሻ ൅ 𝑉௝ሺ𝑎;𝛽ሻ

൅ 𝜇𝜀ሺ𝑎ሻቁ൨ 

ൌ 𝜇 ∙ ln෍ 𝛿ሺ𝑎|𝑘ሻ𝑒
ଵ
ఓቀ௩൫𝑎ห𝑘;𝛽൯ା௏ೕሺ௔;ఉሻቁ

௔∈஺ሺ௞ሻ
 

∀𝑘ϵ𝐴  

(2) 

 
where 𝑣ሺ𝑎|𝑘;𝛽ሻ represents the instantaneous utility, 
𝑉௝ሺ𝑘;𝛽ሻ  represents the expected maximum utility 
from link 𝑘 to destination 𝑗, 𝛽 is a vector of parame-
ters, 𝜖ሺ𝑎ሻ is the random term which assumed to be 

Table 1 Phases of Disrupted System 

Author(s) 
Phases of Disrupted System 

First Second Third Fourth 

Najarian & Lim (18) Anticipation Absorption Adaptation Recovery 

Bešinović, N. (19) Robustness Survivability Response Recovery 

Bawankule, et al. (20) - Absorb & learn Adapt Recovery 

Bevilacqua, et al. (21) Prevention Mitigation Recovery Long-term impact 

Pant, et al. (22) Reliability Vulnerability-survivability Recover ability 

OECD (23) Original Disrupted Recovery 

Hossain, et al. (24) Prevention Degradation Restoration & Adaptation 

Ouyang, et al. (25) Prevention Damage propagation Recovery 

 

 
Figure 1. The phase transition of a system (adapted from Najarian and Lim (17)) 
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i.i.d extreme value type I, 𝜇 denotes the scale param-
eter, and 𝐴ሺ𝑘ሻ is a set of outgoing links from link 𝑘. 

Using the recursive logit model, we can now 
straightforwardly define the accessibility index 
𝑎𝑐௜௝௖ఛ from origin i to destination j at date 𝑐 and time 
of day 𝜏 as follows: 
 
𝑎𝑐௜௝௖ఛ ൌ 𝑉௝൫𝑘෨ ;𝛽൯  

            ൌ 𝜇 ∙ ln∑ 𝛿ሺ𝑎|𝑘෨ሻ𝑒
భ
ഋ
ቀ௩ቀ𝑎ቚ𝑘෨ ;𝛽ቁା௏೏ሺ௔;ఉሻቁ

௔∈஺೎ഓ൫௞෨ ൯   
(3) 

 
where 𝑘෨  is a link representing origin 𝑖  (i.e., a road 
link in front of city hall) and 𝐴ఛሺ𝑘෨ሻ represents a set 
of outgoing links from 𝑘෨  under the disrupted 
transport network at date 𝑐 and time of day 𝜏. 𝑎𝑐௜௝௖ఛ 
would vary across time, since 𝐴௖ఛ൫𝑘෨൯ varies depend-
ing on network disruptions due to disaster and recov-
ery activities. 
 
(2) The Expected Minimum Generalized Cost 
 

In this study, we defined the generalized cost as the 
cost travelers have to pay due to changes in the travel 
time in the network, converting the travel time to the 
cost. We straightforwardly calculate the generalized 
cost with the function of time and date 𝑥௜௝ሺ𝑐𝜏ሻ 
through equation below: 
 

𝑥௜௝ሺ𝑐𝜏ሻ ൌ  
1
𝛽௖

 ሺ𝑎𝑐௜௝௖ఛሻ (4) 

 
where 𝛽௖ is the cost parameter in 100 Japanese Yen 
(JPY) adopted from Oka et al. (28), e.g., -18.45, 
where the parameter along with other parameters was 
estimated using freight vehicle GPS trajectory data; 
𝑎𝑐௜௝௘ఛ  represents the accessibility index at date 𝑐 
time 𝜏 . This generalized cost is varying over time 
along with the recovery of the link in the network. 
 
(3) Elasticity  
 
To obtain the elasticity value, we utilize the follow-
ing multilevel model: 
 
𝑄௜௝௖ఛ ൌ 𝛽଴ ൅ ሺ𝛽ଵ ൅ 𝑢ଵ௜௝ఛሻ𝑥ଵ௜௝௖ఛ ൅ 𝜀௜௝௖ఛ (5) 

 
where 𝑄௜௝௖ఛ is the log of total trips from origin 𝑖 to 
destination 𝑗 at date 𝑐 and time of day 𝜏; 𝑥ଵ௜௝௖ఛ is the 
log of expected minimum generalized cost from 
origin 𝑖 to destination 𝑗 at date 𝑐 and time of day 𝜏; 
𝛽଴ and 𝛽ଵ are the fixed effects from origin 𝑖 to desti-
nation 𝑗 at time of day 𝜏, qhwew 𝛽ଵ  represents the 
service elasticity of travel demand; 𝑢ଵ௜௝ఛ is the ran-
dom term representing the deviation of the elasticity 

values across origin, destination, and time of day, fol-
lowing the normal distribution with zero mean and 
variance 𝜎௨ଶ , and 𝜀௜௝௖ఛ  is the white noise (residual), 
following the normal distribution with mean zero and 
variance 𝜎௘଴

ଶ . Although different elasticity values 
across ODs can be produced under the above model 
setting, this study sorely focuses on changes in the 
average elasticity value to simply the discussions. We 
divided the whole study period (June 1, 2018 to Sep-
tember 30, 2018) into 120 three-day consecutive pe-
riods (i.e., June 1-3, June 2-4, ..., September 27-29, 
September 28-30), and develop a model for each to 
obtain a time-dependent service elasticity of travel 
demand. Additionally, we also consider the differ-
ences between weekend and weekdays, given that 
weekday trips might have different elasticities than 
weekend trips (5) by adding weekend dummy in the 
model.  

In this study, we set the following two hypotheses:  
 

H1: The service elasticity of travel demand becomes 
less elastic soon after the disaster. People still travel 
partially because they have to conduct emergent dis-
aster-related activities even though travel cost is 
higher than normal. 
 
H2: The service elasticity of travel demand becomes 
more elastic after the emergency. People cancel their 
trips partially because they realize that their road use 
leads to serious congestions that may negatively in-
fluence the recovery process. 

 
By confirming the above two hypotheses, we ar-

gue that elasticities will vary over time during disas-
ter, and changes in elasticities would be a useful in-
dicator of phase transition since changes in elastici-
ties depict changes in consumers’ tastes for transpor-
tation services, which would be essential information 
for transport management during disaster. For exam-
ple, ride sharing could be a good option to efficiently 
utilize the limited transport supply during disaster 
(29), but it could nudge people to travel more and 
thus it may have to be implemented after the transi-
tion to the recovery phase. Our proposed indicator 
can be used to identify the appropriate timing of im-
plementing such a policy measure.  
 
4. STUDY AREA AND DATA 
 

This study focused on Hiroshima Prefecture, par-
ticularly affected area during heavy rain disaster July 
2018. The study area covers: (1) Hiroshima City, (2) 
Higashi-Hiroshima City, (3) Kure City, and (4) Aki 
District, shown in Figure 2.  
The data used in this study were (1) transport network 
data, and 2) Mobile Spatial Statistics obtained from 

第 64 回土木計画学研究発表会・講演集



 5 

Docomo Insight Marketing Inc., as presented below. 
 
(1) Transport Network Data 
 

The transport network data are prepared together 
with an information about link closures and recover-
ies during disaster, which is critical to explore tem-
poral changes in the transport network performance. 
Figure 3 shows the number of available links over 
time in the study area. There are 86 links in the net-
work, consist of roads and railroads (train). Note that 
we only reflect arterial roads such as expressways, 
prefectural, and national roads. As Figure 3 indicates, 
the available links when the disaster occurred were 
only 35 out of 86, and it gradually increase over time 
as the recovery proceeds. We can also confirm that 
recovery activities in road were faster than railroad in 
the network, probably due to the differences in the 
complexity of the system. 

Figure 4 shows the connectivity in transport net-
work in different periods. Figure 4(a) shows transport 
network before disaster occurred. All 86 links were 
available connecting the 27 study areas, which the ID 
of the area can be seen in Table 2. Figure 4(b) shows 
the connectivity soon after the disaster occurred, 
which indicate that Kure city (IDs 1-7) only had lim-
ited links to other cities. Note that this study does not 
cover every small road links in the network and water 
transportation. Thus, some travel demand to/from 
Kure city were observed in Mobile Spatial Statistics 
data, even though the connectivity of transport net-
work observed in the Figure 4(b) does not have any 
connection. Figure 4(c) shows the connectivity in the 
network, seven days after the disaster occurred. Some 
links were recovered, and all areas were connected. 

 
(2) Mobile Spatial Statistics Data 
 

The Mobile spatial statistics are the population 

 

 
Figure 2. Map of Study Area 

 

 
Figure 3. Number of available links over time 
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movement statistics generated from mobile terminal 
network operational data. The data contains esti-
mated origin-destination (OD) travel demand among 
27 zones, regardless the travel modes. 
Due to the Docomo Insight Marketing Inc. privacy 
policy, we exclude some area (e.g., Gohara, Shiwa, 
and Nakano, refers to Table 2) given that these data 
were masked due to low travel demand. The data is 
available from June 1, 2018, to September 30, 2018. 
As mentioned earlier in this paper, the travel demand 
under disrupted condition might have two kind of 
conditions, e.g., (a) the travel demand will decrease 

because people may cancel their trips, and/or (b) the 
travel demand will increase, because people still 
travel even though the service level is worse, which 
might include trips for emergency/recovery activi-
ties. Using mobile spatial statistics, we found that the 
travel demand increased in some origin-destination 
(OD) soon after the disaster, but mainly travel de-
mand decreased in most areas. Figure 5 shows the 
number of trips over time in the affected area (Kure, 
Higashi-Hiroshima, and Aki district) and non-af-
fected areas (Hiroshima city). 

Table 2 List of Study Area 
ID New ID Area City ID New ID Area City 
1 1 Kure/Chuo Kure 15 13 Fuchu Aki District 
2 2 Tenno Kure 16 14 Kaita Aki District 
3 3 Yakeyama Kure 17 15 Kumano Aki District 
4 4 Hiro Kure 18 16 Saka Aki District 
5 - Gohara Kure 19 17 Naka ward Hiroshima 
6 5 Ondo Kure 20 18 Higashi ward Hiroshima 
7 6 Yasuura Kure 21 19 Minami ward Hiroshima 
8 7 Takaya Higashi-hiroshima 22 20 Nishi ward Hiroshima 
9 8 Saijo Higashi-hiroshima 23 21 Asa Minami ward Hiroshima 
10 9 Hachihon-matsu Higashi-hiroshima 24 22 Asa Kita ward Hiroshima 
11 - Shiwa Higashi-hiroshima 25 - Nakano Hiroshima 
12 10 Kurose Higashi-hiroshima 26 23 Yano Hiroshima 

13 11 
Toyosaka. Fuku-
tomi. Kochi 

Higashi-hiroshima 27 24 Saiki Hiroshima 

14 12 Akitsu Higashi-hiroshima     
 

 
(a) before disaster (June 30, 2018) 

 

 
(b) after disaster (July 7, 2018) 

 
(c) seven days after disaster (July 14, 2018) 

Note) The location IDs are provided in Table 2. 
Figure 4. Changes in transportation network by July 2018 heavy rain disaster – all conditions show the weekend information. 

第 64 回土木計画学研究発表会・講演集



 7 

These classifications were made based on link 
availability obtained from the transport network data. 
Figure 5 also shows the number of trips in both af-
fected and non-affected areas were decreasing not 
only on the day when the July heavy rainfall hap-
pened but also on other days, e.g., due to typhoon on 
July 29, 2018, and September 28 to October 1, 2018; 
and Obon festival (festival in Japan) on August 13 to 
August 15, 2018. Although some disruptions affected 

the travel demand, the heavy rain disaster in July 
2018 still leaves some damaged roads, and until Sep-
tember 2018, the transport network was not fully re-
covered. Note that the weekend data is included in 
this figure so that some drops were captured apart 
from the previously mentioned events. In the heavy 
rain disaster, we encountered a number of trips mixed 
with the recovery and emergency activities. Thus, the 
decrease in the number of trips was not so different 
from other disruptions. 

Meanwhile, Figure 6 shows the travel demand at 
four different times. Figure 6(a) shows the travel de-
mand before disruption occurred. The X-axis shows 
the destination ID; Y-axis shows the origin ID, while 
the level shows the logarithm value of travel demand. 
Red color indicates lower travel demand, and blue 
color indicates higher travel demand.  

All matrices shown in Figure 6 was generated from 
weekend data, e.g., June 30, 2018, as before the dis-
aster occurred; July 7, 2018, as the day when the dis-
aster occurred; July 14, 2018, a week after the disas-
ter, and August 11, 2018, a month after the disaster 
occurred; since that the day when disruption occurred 
is in the weekend so that we can compare all the 
travel demand mentioned, given that weekend and 
weekdays, data may have a different pattern of travel 

demand. In Figure 6(a), we can confirm that condi-
tion that intra-trips travel demand has higher travel 
demand than the demand to or from other areas. The 
higher travel demand is in the Hiroshima city area. 
We can also confirm that, when the disaster occurred 
and many links were disrupted, the travel demand 
drastically decreased. Figure 6(b) showing the travel 
demand on the day when the disruption occurred, and 
many ODs were not connected at all, indicated by 
white color in the matrix. The intra-trips, especially 
in Kure, have low travel demand due to the severity 
of the damage that affects the links’ connectivity. A 
similar condition also happened in Higashi-Hiro-
shima and Aki District, where some links are dis-
rupted. However, again, we confirm that intra-trips 
still higher than the travel demand to or from other 
areas. Figure 6(c) shows travel demand a week after 

 

Figure 5. Changes in total number of daily trips in the target area  

Heavy rain disas-

ter 
Affected areas 

Non-Affected areas Typhoon 

07.29  

Obon break (お

盆) 

08.13-08.15 

Typhoon 

09.28 – 10.01 
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disruption occurred. Although not all the links were 
recovered, each O-D has at least one link. So that, 
people can travel despite sometimes they have to take 
a detour to reach the destination. Travel demand in-
creased a month after the disaster (Figure 6(d)) com-
pared to a week after the disaster (Figure 6(c)). At 
that time, most of the links were recovered. 
 
5. RESULTS AND DISCUSSION 
 
(1) The Expected Minimum Generalized Cost 
 
The expected minimum generalized cost was 
straightforwardly obtained from the accessibility in-
dex calculated from the recursive logit model. The 
accessibility index refers to the easiness of reaching 

the destination. The higher index indicating the ac-
cess to a specific destination is easier (more accessi-
ble) and vice versa. Many roads were damaged when 
the disruption occurred and cannot be used; thus, the 
accessibilities are smaller than the accessibility be-
fore disruption occurred. Note that in the calculation 
of the accessibility index, we also used travel time 
and travel cost to generate the logsum value (accessi-
bility); the details can be seen in our previous study 
(27). 

In analyzing the expected minimum generalized 
cost, we adopted parameters from Oka et al. (28), 
where the parameters were empirically estimated us-
ing freight vehicle GPS trajectory data. The general-
ized cost indicates the cost people have to pay when 
they make the trips. Figure 7 shows the calculated 

 
(a) Before disaster 

(June 30, 2018) 

 
(b) Soon after disaster 

(July 7, 2018) 
 

 
(c) A week after disaster 

(July 14, 2018) 

 
(d) A month after disaster  

(August 11, 2018) 
 

Note: The IDs (New IDs) of origins/destinations are provided in Table 2. 
Figure 6. Travel demand matrices by July 2018 heavy rain disaster. 

Hiroshima 

Aki District 

Higashi-Hiroshima 

Kure 
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generalized cost in each point of time. The level 
shows the logarithm of expected minimum general-
ized cost. Figure 7(a) shows the condition before dis-
ruption occurred, while Figure 7(b) demonstrated the 
condition soon after the disaster occurred. Due to the 
massive network disruption, we can confirm that 
some of the OD pairs have no connections, indicated 
by the white cells. Figure 7(c), shows the expected 
minimum generalized cost a week after the disaster, 
representing that some pairs still have higher ex-
pected minimum generalized cost. Meanwhile, Fig-
ure 7(d) represents the condition a month after the 
disaster. The expected minimum generalized cost in 
this condition almost goes back to the condition be-
fore the disaster occurred, where all connectivity has 
its own expected minimum generalized cost and in 
the intra-trips have a lower value of expected mini-
mum generalized cost. 

 
(2) Elasticity 
 
The temporal changes of elasticity used the three-day 
consecutive periods from June 1, 2018, to September 
30, 2018. This study decided to use three-day length 
data to analyze the elasticity since the patterns could 
better explain the condition. Additionally, we con-
firmed that the elasticity in the seven days and two 
weeks length data would produce the similar elastic-
ity values, and thus the results are less affected by the 
length. Table 3 showing the result of the model for 

three out of 120 period, indicating that the elasticity 
value a) before the disruption (period 7; June 7-9, 
2018), b) soon after the disruption (period 35; June 5-
7, 2018), and c) about a month after the disruption 
(period 70; August 9-11, 2018). 

These results indicate that the elasticity value is 
increasing soon after the disaster but then might 
higher after the disaster, which follow the tilde 
shaped (~shaped). Soon after the disaster (b), the 
elasticity value is -0.802, meaning that a 1% increase 
in the expected minimum generalized cost will re-
duce 0.802% demand. This result is also showing that 
the elasticity is less elastic compared to the average 
elasticity value before disruption (-0.989), meaning 
that people tend to travel although the expected min-
imum generalized cost as the service level changes. 
This would be partially because travel demand in-
cludes the evacuation and emergency activities, 
changing the nature of transportation services from 
luxury goods to necessity goods to some extent.  

This finding confirms the first hypothesis, H1: 
The service elasticity of travel demand becomes less 
elastic soon after the disaster. People still travel par-
tially because they have to conduct emergent disas-
ter-related activities even though travel cost is higher 
than normal. The finding shows that even though the 
expected minimum generalized cost changes due to 
changes in the service level, people still tend to or 
need to travel.  

This condition is then followed by the cancelation 

 
(a) Soon after disaster (June 30, 2018) 

 
(b) A day after disaster (July 7, 2018)  

 
(c) A week after disaster (July 14, 2018) 

 
(d) A month after disaster (August 11, 2018) 

 
Note: The IDs (New IDs) of origins/destinations are provided in Table 1. 

Figure 7. Generalized cost matrix by July 2018 heavy rain disaster. 
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trips, supporting the hypothesis H2: The service elas-
ticity of travel demand becomes more elastic after the 
emergency. People cancel their trips partially be-
cause they realize that their road use leads to serious 
congestions that may negatively influence the recov-
ery process. 

During the recovery process, people may consider 
the services as luxury goods since they may start to 
realize that their road use would lead to serious con-
gestions that may negatively influence the recovery 

process. As a result, the travel demand would volun-
tarily decrease. Considering the resilience concept 
and its phases, we divided the elasticity graph over 
time into three phases based on the existing studies. 
Figure 8 shows the results together with the log of 
generalized cost, travel demand, and link availability. 
We also added the moving average of the elasticity, 
showing the average elasticity for seven days value. 
We then defined three main phases when a transpor-

 
Table 3. Estimation Results 

(a) before the disruption (period 7; June 7-9, 2018) 
 

β t-value 𝜎ଶ Std. Dev 

Fixed effects 

(Intercept) 3.648 344.791   

𝑥ଵ௜௝ఛ  -0.964 -42.792   

Random effects 

Origin-destination-
time 

  
1.901 1.379 

Residual   0.321 0.567 

R-square 0.883 

Final log-likelihood -24,888.4 

Number of observations 19,804 

 
(b) soon after the disruption (period 35; June 5-7, 2018) 

 
β t-value 𝜎ଶ Std. Dev 

Fixed effects 

(Intercept) 3.758 292.452   

𝑥ଵ௜௝ఛ  -0.802 -36.338   

Random effects 

Origin-destination-
time 

  
1.270 1.127 

Residual   0.428 0.654 

R-square 0.852 

Final log-likelihood -20,346.8 

Number of observations 14,963 

 
(c) about a month after the disruption (period 70; August 9-11, 2018). 

 
β t-value 𝜎ଶ Std. Dev 

Fixed effects 

(Intercept) 3.656 394.69   

𝑥ଵ௜௝ఛ  -1.076 -49.61   

Random effects 

Origin-destination-
time 

  
1.896 1.377 

Residual   0.326 0.571 

R-square 0.875 

Final log-likelihood -25,126.2 

Number of observations 20,396 
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tation system got disrupted based on changes in elas-
ticity values. First, the normal condition. This condi-
tion is generally defined as the condition when there 
is no disruption occurred in the network. In this phase, 
all links are available, and the demand elasticity is 
less elastic, meaning that people remain travel despite 
its expected minimum generalized cost. Second, the 

emergency phase, meaning that the phase when the 
disruption occurred. We simply defined the emer-
gency phase based on the elasticity values, where the 
elasticity value is less than the average elasticity 
value before disruption, which is considered less 
elastic, meaning that people tend to consider travel as 
a necessity good. This is partially evidenced by the 
increased travel demand in some O-D pairs soon after 
the disaster. Nevertheless, as we discussed previously, 
the majority of the travel demand in this phase de-
creased.  

Note that we do not separate the evacuation activ-
ity and the demand from the travelers in this study. 
Third, after some time, the elasticity is greater than 
the average elasticity value before disruption, indi-
cating that people start to adapt (trip cancelation, etc.). 
This condition would imply the end of the emergency 
phase, or shift to the adaptation and recovery phase, 
since the degree of the necessity of transportation ser-
vices goes back to normal.  

The results of this study would help policymakers 
to better understand the situation. In heavy rain dis-
aster July 2018 Japan, Tennou-Kure as one of the 
affected area experienced congestion due to high 
travel demand, and it continued for several months. 

In the emergency phase, the demand reduced on av-
erage, but people may tend to consider transportation 
services as necessity goods even though the network 
was disrupted and total travel cost was higher, which 
further, the congestion cannot be avoided (30). In this 
emergency state, it is better to prioritize the emer-
gency vehicles. However, at the certain point, when 

the phase transition to adaptation recovery phase oc-
curred, people tend to voluntarily cancel the travel 
(31). Implying that people start to adapt with the con-
dition of the recovery process. In this phase, an effi-
cient tentative transport service, such as a temporal 
BRT service introduced in Hiroshima-Tennou-Kure 
during heavy rain disaster in 2018 (32), would need 
to be introduced as an transportation management 
measure during disaster. 

 
CONCLUSION 

The primary objective of this paper was to explore 
the changes in service elasticity of travel demand, 
where the service level is defined as the expected 
minimum generalized cost obtained from the recur-
sive logit model. To facilitate the understanding of 
changes in service elasticity of travel demand, we in-
troduce a resilience concept and identify several tran-
sition phases during disaster. The empirical analysis 
was conducted focusing on the heavy rain disaster 
2018 in Hiroshima Metropolitan Area, Japan. 

The study has two hypotheses regarding changes 
in the elasticity value: (1) the service elasticity of 
travel demand becomes less elastic soon after the dis-
aster. People still travel partially because they have 
to conduct emergent disaster-related activities even 

 

 
Figure 8. Changes in service elasticity of travel demand during heavy rain disaster occurred in July 2018 in Hiroshima 
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though travel cost is higher than normal, and (2) the 
service elasticity of travel demand becomes more 
elastic after the emergency. People cancel their trips 
partially because they realize that their road use leads 
to serious congestions that may negatively influence 
the recovery process. The empirical results done us-
ing a multilevel log-log regression model support 
these two hypotheses and confirm that the identified 
temporal patterns of elasticities follow the tilde 
shape: it increased soon after the disaster (i.e., trans-
portation services tend to be necessity goods), de-
creased rapidly after the emergency phase (i.e., 
transportation services tend to be luxury goods), and 
gradually returned to the original level. This implies 
that people tend to be less sensitive to the network 
disruption in the emergency phase, but then people 
start to adapt the condition in the adaptation and re-
covery phases. Identifying these transitional phases 
will help policymakers to understand and able to re-
spond to each phase, since primary goal of disaster 
management would be different by phase.  

In future, we need to conduct more empirical stud-
ies with focusing on different disasters and different 
regions to confirm that whether or not the identified 
tilde shape changes in elasticity are a robust finding. 
Also, this study does not take into account the con-
gestion aspects, though it was serious problem during 
the disaster (30). Even though we have such limita-
tions, we believe that this study has an important con-
tribution to organizing and consolidating different 
phases of transport management during disaster. 
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