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Employing a large dataset (at most, the order of n = 106), this study attempts enhance the literature on 

the comparison between regression and machine learning (ML)-based rent price prediction models by add-

ing new empirical evidence and considering the spatial dependence of the observations. The regression-

based approach incorporates the nearest neighbor Gaussian processes (NNGP) model, enabling the appli-

cation of kriging to large datasets. In contrast, the ML-based approach utilizes typical models: extreme 

gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). The out-of-sample 

prediction accuracy of these models was compared using Japanese apartment rent data, with a varying order 

of sample sizes (i.e., n = 104, 105, 106). The results showed that, as the sample size increased, XGBoost and 

RF outperformed NNGP with higher out-of-sample prediction accuracy. XGBoost achieved the highest 

prediction accuracy for all sample sizes and error measures in both logarithmic and real scales and for all 

price bands (when n = 105 and 106). A comparison of several methods to account for the spatial dependence 

in RF showed that simply adding spatial coordinates to the explanatory variables may be sufficient. 

   Key Words : Apartment rent price prediction, large data, Nearest neighbor Gaussian processes (NNGP), 

Deep neural network (DNN), Extreme gradient boosting (XGBoost), Random forest (RF) 

1. INTRODUCTION

Online automatic real estate price estimation 

services, such as Zestimate (a service of the Zillow 

Group in the United States), are increasing in 

popularity. Seya and Shiroi (2021)1) reported that 
accurate price assessments and predictions are crucial 

for real estate agents, as well as end users. 

Considering the perspective of the agency, reducing 

appraisal costs and improving transparency are 

advantageous. Meanwhile, the perspective of end 

users involves the improvement of information 

asymmetry between real estate agencies and end 

users to a certain extent. Massive property data and 

statistics- or machine learning (ML)-based real estate 
sales and rent price prediction methods are the means 

of support for agents and users.  

Traditionally, regression approaches are employed 

to prices of real estate and rent, although automated 

assessment of real estate sales and rent prices using 

techniques involving massive data and ML-based has 
garnered attention2,3). Efron (2020)4) reported 

regression-based approaches being typically used for 

prediction as well as attribution, that is, the 

individual predictors being assigned significance 

(i.e., significance testing). However, combining weak 

learners in ML-based approaches (e.g., random forest 

(RF) or extreme gradient boosting [XGBoost]) is not 

effective in the case of attribution. Thus, regression-

based approaches can offer advantages. However, 
considering pure prediction, simple functional forms, 

such as linear, logarithmic, and Box-Cox, commonly 

employed in regression-based approaches, may be 

inadequate for capturing the nonlinearity of the data. 

Therefore, examining the extent of the difference in 

prediction accuracy from ML-based methods is 

第 64 回土木計画学研究発表会・講演集



2 

crucial. 

Constructing prediction models of real estate sales 

or rent prices results in certain challenges in 

accommodating factors such as neighborhood quality 

as explanatory variables (covariates)5). Hence, 

considering the spatial dependence inherent in the 

data is important6,7). In geo-(spatial) statistics, 

regression-based kriging was established to 

incorporate spatial dependence among error terms, 

typically applying a Gaussian process (GP) to the 
errors8). Certain studies, such as James et al. (2005)9), 

Bourassa et al. (2010)10), and Seya et al. (2011)11), 

reported that high predictive accuracy was offered by 

the kriging approach compared to multiple regression 

models (ordinary least squares [OLS]) in the 

property-related literature. Because the OLS model 

structure is straightforward, it enables parameter 

determination using relatively small samples. 

However, with kriging, as the price information of 
neighboring properties is reflected in the predicted 

results through spatial dependence, it results in a 

situation different from that of OLS. That is, several 

prediction benefits of increasing the sample size 

exist1). In contrast, in the case of the ML approach, 

research that attempts to introduce spatial 

dependency into the model remains in its early 

stages, although some interesting studies have 

recently been conducted12,13). 
This study aims to supplement the literature with 

the addition of new empirical evidence via 

comparison of regression- and ML-based rent price 

prediction models used on a large dataset (at most, in 

the order of n = 106), and considering the spatial 

dependence among observations as an expansion of 

that reported by Seya and Shiroi (2021)1). The former 

approach required kriging. However, OLS was also 

employed to set a general benchmark. Moreover, 

with increasing sample size (e.g., when n = 105), 
application of kriging directly becomes difficult, 

requiring O(n3) computational cost to invert the 

variance–covariance matrix. Therefore, we 

considered the nearest neighbor Gaussian processes 

(NNGP) model, allowing the application of kriging 

to massive data via sparse approximation14,15,16). 

Although exist several methods exist to conduct 

spatial statistical modeling with big data17,18), NNGP 

is reliable owing to it consistent competitive results 
in comparative studies19). Furthermore, for the latter, 

certain representative models, namely, RF, XGBoost, 

and deep neural network (DNN) were employed. 

Several trials have compared and investigated the 

predictive accuracy of real estate sales and rent prices 

between regression- and ML-based approaches. 

However, certain limitations should be overcome, 

including [1] small sample sizes, [2] disregard for 

spatial dependence, and [3] tailored and ad hoc 

hyperparameter settings. Hence, in this study, we [1] 

examined different and relatively large sample sizes 

(n = 104, 105, and 106), [2] considered spatial 

dependence, and [3] finely calibrated the 

hyperparameters via cross-validation.  

Further, this study employed the LIFULL 

HOME’s dataset to evaluate monthly residential 

apartment rental prices in Japan for empirical 

evidence. This dataset was also used by Seya and 

Shiroi (2021)1) and comprises rental property cross-
sectional data and image data up to September 2015. 

The rental property cross-sectional data include rent, 

lot size, location (i.e., municipality, zip code, nearest 

station, and time consumed to walk to the nearest 

station), year it was built, layout of the room, building 

structure, and equipment for 5.33 million properties 

throughout Japan. Meanwhile, the image data 

comprise 83 million pictures that outline the floor 

plans and details about the interiors for every 
property. This study employed only the former data.  

Among the 5.33 million properties, 4,588,632 

properties were retained after the missing data was 

excluded. Thereafter, n = 104, 105, and 106 properties 

were randomly sampled from the cleaned data. 

Subsequently, the regression-based (OLS and 

NNGP) and ML-based approaches (RF, XGBoost, 

and DNN) were compared via a validation process 

while considering the difference in sample size and 
out-of-sample predictive accuracy of rent prices.  

The remainder of this paper proceeds as follows. 

Section 2 presents a short review of existing 

literature. Section 3 explains the models used in this 

comparison study. Further, Section 4 details the 

results obtained from the comparative analysis using 

the LIFULL HOME dataset. Finally, the concluding 

remarks, along with the scope for future research, are 

presented in Section 5.  

2. LITERATURE REVIEW

This section presents a review of the literature re-

garding the prediction of real estate sales and rent 

prices. Studies have postulated that spatial regression 

models exhibit a high predictive accuracy compared 

to the OLS model9). Seya et al. (2011)11) examined 

the performance of various spatial prediction models 
that considered spatial dependence by employing a 

dataset comprising apartment rents of 23 wards in 

Tokyo for empirical comparison. They showed the 

benefit of considering spatial dependence in the error 

term (e.g., kriging, geoadditive model, and spatial er-

ror model) or regression coefficients (e.g., geograph-

ically weighted regression (GWR) model). However, 

a limitation was the small size (i.e., 529 for parameter 

estimation and 150 for validation). 
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Geostatistical models (kriging) and spatial econo-

metric models are extensively used to consider spa-

tial dependence among errors. Many studies have ap-

plied both methods to hedonic price modeling. How-

ever, for the purpose of spatial (i.e., out-of-sample) 

prediction, the former, which requires no spatial 

weight matrix, is more natural and flexible20). How-

ever, a comparison by Seya et al. (2011)11) revealed 

that the differences in the predictive accuracy be-

tween the kriging and spatial econometric models are 
negligible, compared to the differences between OLS 

and kriging. For kriging, application to massive data, 

on the order of a million, can be achieved by consid-

ering various approximations19). 

Various methods have been developed to model 

spatial dependence among regression coefficients in 

different fields, including geography, statistics, and 

ML21,22,23,24). Because the housing market is often 

segmented, the local model (i.e., spatially varying co-
efficient (SVC) model) can be applied. Hence, SVC 

models have been employed for hedonic price mod-

eling in several studies. However, their application to 

massive amounts of data remains in its nascent 

stages25,26). For instance, the scalable GWR model, 

proposed by Murakami et al. (2020)26), was applied 

to our dataset. However, the parameter estimation 

procedure (i.e., the bandwidth selection procedure) 

was not completed within 24 hours when n = 105. 
Thus, application of the model to a dataset with a 

sample size of n = 106 and above is difficult. 

Several attempts have been made to achieve the re-

sults based on similar motivation. Seya and Shiroi 

(2021)1) reviewed studies that employed neural net-

work (NN) methods. Valier (2020)27) reported that 57 

cases are available wherein ML-based models, in-

cluding NN, were more accurate in predicting the val-

ues than the 13 cases wherein regression performed 

better. Zurada et al. (2011)28) suggested that, although 
many recent studies have compared regression with 

artificial intelligence (AI)-based methods in the con-

text of mass appraisal, useful comparison of the pub-

lished results is a challenge because the models in 

many studies were built by considering relatively 

small samples. Therefore, for a more comprehensive 

comparative study, a dataset containing over 16,000 

sales transactions was used. They found that non-tra-

ditional regression-based methods performed better 
in all simulation scenarios, specifically with homoge-

neous datasets. However, AI-based methods per-

formed well with less homogeneous datasets under 

certain simulation scenarios. Seya and Shiroi 

(2021)1), upon which the present study was built, 

compared the performances of OLS, NNGP, and 

DNN. They found that, with an increase in sample 

size from n = 104 to 106, the DNN’s out-of-sample 

predictive accuracy approaches that of NNGP and is 

nearly equal in the order of n = 106. However, in 

terms of both higher- and lower-end predictive accu-

racy for which rent prices deviate from the median, 

DNN may have better results than NNGP. Seya and 

Shiroi (2021)1) have a clear limitation in that they 

only used the DNN method to represent the ML ap-

proach. 

Several studies have employed tree-based tech-

niques to realize the ML approach. Pace and Hayunga 

(2020)29) examined tree-based techniques, including 
classification and regression trees (CART)30), boost-

ing31), and bagging32). Further, they compared these 

techniques to the spatio-temporal linear model33), 

considering over 80,000 real estate prices in the 

United States. Bagging was found to work well and 

could yield lower out-of-sample residuals than global 

spatiotemporal methods; however, its performance 

was poorer than local spatiotemporal methods. 

Mayer et al. (2019)34) used a large dataset consisting 
of over 123,000 single-family houses sold in Switzer-

land between 2005 and 2017. They reported that the 

gradient boosting (GB) approach performed far better 

than the other methods. It was followed by mixed ef-

fects regression, the NN method, and the RF ap-

proach in terms of performance. Based on the online 

housing platform, Ming et al. (2020)35) used 33,224 

pieces of data reflecting Chengdu housing rentals in 

China. They empirically compared the predictive 
performance of RF, LightGBM, and XGBoost and 

found that XGBoost performed the best. Ho et al. 

(2021)36) used three ML algorithms, namely, support 

vector machine (SVM), RF, and GB, to appraise 

property prices. They applied these methods to exam-

ine a data sample of approximately 40,000 housing 

transactions over a period of over 18 years in Hong 

Kong and then compared the results of these algo-

rithms. They found that RF and GBM outperformed 

the SVM in terms of predictive power.  

3. MODELS

This section introduces regression- and ML-based 

approaches to the spatial prediction. 

(1) Regression-based approaches

a) NNGP

Consider D as the spatial domain and 𝒔 the coordi-

nate position (X, Y). The spatial regression model, 
also referred to as the spatial process model17,37), can 

be expressed as:  

𝑦(𝒔) = 𝑚(𝒔) + 𝑤(𝒔) + 𝜀(𝒔), 

𝜀(𝒔)~𝑁(0, 𝜏𝟐),
(1) 

where 𝑦(𝒔) is the spatial process for real estate rental 

prices, which is decomposed to 𝑚(𝒔), 𝑤(𝒔),  and 

𝜀(𝒔).  Further, 𝜏2  represents a variance parameter
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termed as a nugget representing the micro-scale var-

iation and measurement error38). Typically, it is as-

sumed that 𝑚(𝒔) = 𝒙(𝒔)′𝜷, where x is an explana-

tory variable vector at point s, and 𝜷 is the corre-

sponding regression coefficient vector. Further, 𝑤(𝒔) 

is assumed to follow the GP: w(𝒔)~𝐺𝑃(0, 𝐶(∙,∙ |𝜽)), 
with the mean being zero and the covariance function 
being  𝐶(∙,∙ |𝜽)  (where 𝜽  is a parameter vector that 

typically includes the parameter 𝜙  [where 1/ 𝜙  is 

called the range]; it controls the range of the influence 

of spatial dependence, and the parameter 𝜎2 repre-

sents the variance of the spatial process and referred 

to as the partial sill). Finally, 𝜀(𝒔) is an uncorrelated 

pure error term. 

For sample obtained at points s1, …, sn, with y(si) 

and x(si) denoting the dependent variable and explan-

atory variables observed at location si, we obtain 𝒘 =

(𝑤(𝒔1), 𝑤(𝒔2), … , 𝑤(𝒔𝑛))
′

 from the multivariate

Gaussian distribution: w~N(0, 𝑪(𝜽)). Here, 0 is an 

n×1 vector of zeros, and the element of the n×n ma-

trix  𝑪(𝜽)  is expressed as 𝐶(𝒔𝑖, 𝒔𝑗 |𝜽) (𝑖 =

1, … , 𝑛; 𝑗 = 1, … , 𝑛) . Further, y~N (X𝜷, 𝜦(𝜏2, 𝜽) )

can be expressed as the spatial process model, where 

𝜦(𝜏2, 𝜽) = 𝑪(𝜽) + 𝜏2𝑰, where I is an n×n identity

matrix.  

The prediction of the response 𝑦(𝒔0) at a particu-

lar point 𝒔0 is called kriging. For the kriging predic-

tor, the inverse of the n×n variance–covariance ma-

trix 𝜦 is required. Thus, a cost of O(n3) is accrued for 

the computation, which on the order of n = 105 with a 
standard personal computer environment poses a 

challenge. Hence, various approaches are available 

for approximating the spatial process w(s)18,19). This 

study employs the NNGP model14), which was origi-

nally proposed by Vecchia (1988)39). The joint den-

sity of the spatial process w (the full GP) is expressed 
as the product of conditional densities 𝑝(𝒘) =
𝑝(𝑤(𝒔1)) ∏ 𝑝(𝑤(𝒔𝑖)|𝑤(𝒔1), … , 𝑤(𝒔𝑖−1))𝑛

𝑖=2 . There

after, Datta et al. (2016)14) assumed the following ap-

proximation for this joint density:  

𝑝(𝒘) = 𝑝(𝑤(𝒔1)) ∏ 𝑝 (𝑤(𝒔𝑖)|𝒘(𝑁(𝒔𝑖)))

𝑛

𝑖=2

, (2) 

where 𝑁(𝒔𝑖) is a neighbor set of 𝒔𝑖 and serving as the

k-nearest neighbors of 𝒔𝑖 in NNGP. Thus, the com-

plete GP is approximated by the NNGP and can be

expressed as a joint density using the nearest neigh-

bors. Further, Datta et al. (2016)14) demonstrated that

the approximation of Eq. (2) leads to an approxima-

tion of the precision matrix 𝑪−1 to 𝑪̃−1, as expressed

as follows:

𝑪̃−1 = (𝑰 − 𝑨̃)′𝑫−1(𝑰 − 𝑨̃), (3) 

where 𝑨̃ is a sparse and strictly lower triangular ma-

trix, with its diagonal elements represented by zeros, 

with non-zero entries at most k-entries in each row. 

Further, D = diag(dii) is a diagonal matrix whose ele-

ments are conditional variances based on the full GP 

model. Further, as 𝑨̃ can be provided as a k×k (k << 

n) matrix, and 𝑪̃−1 is sparse, significant reduction in

the computational load can be achieved. The spatial

process model provided through NNGP can be ex-

pressed as follows:

𝒚~𝑁(𝑿𝜷, 𝜦̃(𝜏2, 𝜽)), (4) 

where 𝜦̃(𝜏2, 𝜽) = 𝑪̃(𝜽) + 𝜏2𝑰.

The Bayesian Markov chain Monte Carlo 

(MCMC)14), Hamiltonian Monte Carlo40), and maxi-

mum likelihood methods41) can be employed to esti-

mate the parameters of the NNGP model. This study

employed the MCMC. and as the NNGP parameters

are 𝜷 and 𝝓 = (𝜏2, 𝜎2, 𝜙)′ = (𝜏2, 𝜽)′, a prior distri-

bution must be set for each parameter and subse-

quently multiplied by the likelihood function to ob-

tain the conditional posterior distributions (the full

Bayesian NNGP). However, because this study em-

ploys massive data to a maximum order of n = 106,

implementing the full Bayesian NNGP within a prac-

tical computational time is a challenge. Therefore,
this study employs the conjugate NNGP, which was

proposed by Finley et al. (2017)15). Assume 𝑷̃(𝜙) is

the approximate nearest neighbor of a spatial correla-

tion matrix corresponding to an approximate nearest

neighbor of 𝑪̃(𝜽) . Then, the conjugate NNGP can

then be expressed as:

𝒚~𝑁(𝑿𝜷, 𝜎2𝑴̃), (5) 

where 𝑴̃ =  𝑷̃(𝜙) + 𝛼𝑰 and 𝛼 = 𝜏2/𝜎2. The reason

for employing the conjugate NNGP because, assum-

ing that 𝛼 and 𝜙 are known, the conjugate normal-in-

verse Gamma posterior distribution for 𝜷 and 𝜎2 can

be used. Further, it enables obtaining the predictive 

distribution for y(𝒔0) as a t-distribution. Thus, per-

forming MCMC sampling is simple. Section 4 ex-
plains the setting of the values of 𝛼 and 𝜙. 

(2) ML-based approaches

a) RF

RF is a bagging-type ensemble of decision trees

that trains several trees in parallel. RF was proposed 

by Breiman (2001)42) by combining CART and bag-
ging. In the RF algorithm, decision trees constructed 

from bootstrap samples are combined to conduct a 

prediction, where each decision tree is trained inde-

pendently. The training procedure can be described 

as follows: (1) Bootstrap samples are drawn as a ran-

domized subset from the training data, and (2) a de-

cision tree is constructed for every sample, using a 

randomized subset of predictor variables. This varia-

ble selection step helps balance low tree correlation 

with reasonable predictive strength. (3) Aggregation 
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(i.e., averaging) was performed for each predicted re-

sult. Note that there are certain hyperparameters in 

RF that need to be calibrated, which will be explained 

in Subsection 4.3. 

b) XGBoost

XGBoost is an efficient and scalable approach

based on GB developed by Friedman et al. (2000)43) 

and Friedman (2001)44). To generate the final predic-

tion results, GB uses decision trees as weak learners 

in a sequential learning process, in the form of an en-
semble of weak predictions such as decision trees. It 

has three main components: (1) a loss function to be 

optimized, (2) a weak learner to predict, and (3) an 

additive model to add weak learners to optimize the 

loss function. Chen et al. (2016)45) improved the al-

gorithm by adding a regularization term to reduce 

overtraining (overfitting) and called it XGBoost. This 

improved algorithm significantly reduces processing 

time; however, compared to RF, XGBoost has more 
hyperparameters that need to be calibrated. Again, 

this is explained in Subsection 4.3. 

c) DNN

DNN is a mathematical model with a network

structure wherein layered units are connected to 

neighboring layers. Each element that comprises a 

network is referred to as a unit or node. The first layer 

is the input layer, while the last is the output layer. 

The remaining layers referred to as hidden layers. 
Further, the indices for layers are expressed as l = 1, 

…, L, with the first layer being the input layer and the 

Lth the output layer. In a DNN, the previous layer 

transmits the results of the non-linear transformations 

on the received inputs to the next layer, which ena-

bles the outputs at the output layer to be derived as an 

estimation result. Thus, an observation was con-

ducted in each layer, via linear transformations using 

a weight matrix 𝑾𝑙+1 (𝑚𝑙  × 𝑚(𝑙+1)) and non-linear

transformations using an activation function f(.). The 
transformation from the lth layer output zl (𝑚𝑙  × 1)

to the (l + 1)th layer output zl+1 (𝑚(𝑙+1)  × 1) can be

performed using the following equations: 

𝒖𝑙+1 =   𝑾𝑙+1 𝒛𝑙 + 𝒃𝑙+1, (6) 

𝒛𝑙+1 = 𝒇(𝒖𝑙+1 ), (7) 

where 𝒃𝑙+1 is the 𝑚𝑙  × 1 bias vector and 𝒇(𝒖𝑙+1 ) is

the activation function vector. The final output is de-

noted by ( 𝑧𝐿 ≡ 𝑦) . When determining 𝑾𝑙+1  and

𝒃𝑙+1  for a regression (where y is continuous), the

mean squared error (MSE) of the actual value 𝑦 and 

the predictive value 𝑦 are often used as the loss func-

tion 𝑔, expressed as: 

𝑔 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

. (8) 

The process of determining 𝑾𝑙+1 and 𝒃𝑙+1 to mini-

mize 𝑔 is referred to as DNN learning, which is per-

formed using the gradient algorithm, whereas back-

propagation is used to calculate the gradient46). How-

ever, several hyperparameters must be calibrated in 

the DNN, including the number of layers and units in 

the hidden layers, learning rate, and batch size. DNN 

parameter tuning is commonly performed using grid 
and random searches47). 

d) ML approaches and spatial dependence

Hengl et al. (2018)48) argued that RF is essentially

a non-spatial approach to spatial prediction because 

the sampling locations and the general sampling pat-

tern are ignored during the estimation. In this study, 

we examined and discussed appropriate methods for 

introducing or considering spatial dependence in the 

ML framework. In this experiment, we focused on 

RF because it has fewer hyperparameters than DNN 
and XGBoost, which may make it easier to under-

stand the impact of differences in model structure on 

prediction accuracy. Certain possible approaches are 

as follows: geographical covariates, spatial auto-

regressive term, eigenvectors of a distance marix, and 

other approaches. 

Regarding on geographical covariates, as men-

tioned in Sekulić et al. (2021)49), one approach to in-

clude a geographic context into RF is to introduce the 
X and Y coordinates as covariates. We refer to this 

method as the RF_coordinates. Hengl et al. (2018)38) 

proposed the use of buffer distance maps from obser-

vation points as covariates. This relative distance 

method is similar to RF_coordinates; the difference 

is that the latter has a small number of covariates, 

while the former has a large number of covariates. In 

this study, we focused on the RF_coordinates ap-

proach. 
Regarding on spatial autoregressive term, certain 

studies have attempted to introduce spatially depend-

ent RF by employing spatial econometrics50). Credit 

(2021)51) proposed a method for constructing spa-

tially explicit RF models by including spatially 

lagged (spatial autoregressive) variables to mirror 

various spatial econometric specifications. The ap-

proach entails the introduction of a spatial auto-

regressive term for the dependent variables (y) and 
explanatory variables (X). Sekulić et al. (2021)49) 

adopted a similar approach, wherein they directly in-

troduced observations at the k nearest locations and 

the distances from these locations to the prediction 

location, which they termed random forest spatial in-

terpolation (RF_si). Note that Sekulić et al. (2021)49) 

did not use the weighted average; rather, they directly 

introduced the actual observed values. In this study, 

we employ Credit’s (2021)51) approach, that is, the in-

troduction of Wy with and without X–Y coordinates 
(RF_sar and RF_sar_coordinates, respectively), and 

the RF_si approach by Sekulić et al. (2021)49). 
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Regarding on eigenvectors of a distance matrix, 

considering the results by Murakami and Griffith 

(2019)52), Moran eigenvectors from MCM, where 

𝑴 = 𝑰 − 𝟏𝟏′/𝑛 is a centering operator, 𝟏 is a vector 

of ones, and C is an 𝑛 × 𝑛  spatial weight matrix 

whose (i, j)th element equals exp(−𝑑(𝑖, 𝑗)/ℎ), can 

be employed to consider spatial dependence. Here, 

d(i,j) represents the Euclidean distance between the 

sample sites i and j, and h is the maximum length of 

the minimum spanning tree connecting sample 

sites53). However, the calculated when n exceeds 
1,000 the calculated eigenvalues cannot be guaran-

teed as accurate17). Eigen decomposition is possible 

only when n < 10,000 in a standard computing envi-

ronment. There exist several approximation methods 

for eigen-decomposition in the ML literature, with a 

popular approach, called the Nyström extension, be-

ing suitable for the Moran eigenvector approxima-

tion. Using the results of Murakami and Griffith 

(2019)52), the first h approximate eigenpairs can be 

formulated as follows: 

𝑬̃ = 

 [𝑪𝑛ℎ − 𝟏⨂ (
𝟏′

ℎ(𝑪ℎ + 𝑰ℎ)

ℎ
)] 𝑬ℎ(𝜦ℎ + 𝑰ℎ),

(9) 

𝜦̃ℎ =
𝑛

ℎ
(𝜦ℎ + 𝑰ℎ) − 𝑰ℎ , (10) 

where 𝑪ℎ  is an ℎ × ℎ matrix of a spatial weight ma-

trix among h anchor points, defined by k-means cen-

ters (geometric centers of the clusters defined using 

the k-means method). A greater h yields a better ap-

proximation, but results in slower computation; that 

is, the approximation is influenced by the setting of 

the number of h. Murakami and Griffith (2019)52) 
suggested that h = 200 be set to balance accuracy and 

computational efficiency. Although the values should 

be set only after examining the balance between the 

sample size and number of hours, this study applies 

their recommendations. In fact, the cases of h = 500 

and h = 1,000 have also been tested in our empirical 

comparison later. We found h = 200 to be the optimal 

setting in terms of predictive accuracy. This method 

is called as the RF_esf and RF_esf_app with and 
without approximation, respectively. However, the 

former is applicable only when n = 104 or less for C 

constructed is sparse and MCM is not sparse. 

Finally, regarding on other approaches, Georganos 

et al. (2019)54) proposed a method for the remaining 

algorithms,  referred to as geographical random for-

ests, where, for each location i, a local RF is com-

puted, but only k number of nearby observations are 

included. Thus, this results in the calculation of an RF 

at each training data point, with its own performance, 
predictive power, and feature importance. Saha et al. 

(2020)12) proposed RF-GLS, an extension of RF for 

dependent error processes similar to the manner in 

which generalized least squares (GLS) fundamen-

tally extends OLS for linear models under depend-

ence. This extension is based on the equivalent rep-

resentation of local decision making in a regression 

tree as a global OLS optimization, which is subse-

quently replaced by a GLS loss, resulting in a GLS-

style regression tree. For spatial settings, RF-GLS 

coupled with Gaussian process-correlated errors can 

generate kriging predictions at new locations. How-

ever, based on our investigations, these two methods 
although having potential are not readily applicable 

to a massive dataset on the order of n = 105 or higher. 

4. EMPIRICAL COMPARISON

(1) Dataset

The LIFULL HOME data was used on this study

to obtain rent price predictions. The dataset used is 

the same as that used by Seya and Shiroi (2021)1); 

however, we repeated the description to maintain 

consistency. Of 5.33 million properties, 4,588,632 
properties (after excluding missing data) were em-

ployed as the original data. Further, the original data 

did not explicitly contain exact property positional 

coordinates owing to privacy concerns; however, the 

zip codes were available. Hence, to overcome this is-

sue, the barycentric coordinates for zip codes (X and 

Y coordinates projected to the UTM54N WGS84 ref-

erence system) were employed instead. For cases in-

volving multiple properties sharing the same location 

(e.g., a different room in the same apartment), small 
perturbations (random noise) were provided to each 

positional (X, Y) coordinate within the zip code. The 

natural logarithm of the monthly rent price (including 

maintenance fees) in yen is considered the dependent 

variable, and the explanatory variables used are listed 

in Tables 1–3. Typical variables were chosen to in-

clude descriptors of the location of the condominium 

(location variables) and the condominium itself 

(structural variables). “Walk time to nearest (train) 
station” (m), “Floor-area ratio” (%), and “Use dis-

trict” (dummies) were employed as the location vari-

ables. Meanwhile, “Years built” (month), “Number 

of rooms” (#), “Direction” (dummies), “Building 

structure” (dummies), and “Room layout” (dummies) 

were employed as the structural variables. Further, 

the number of explanatory variables (K) was 43. The 

descriptive statistics are presented in Tables 1–3.  

(2) Experimental design

For the prediction of the 4,588,632 properties, ran-

dom sampling was conducted at various sizes (n 

=104, 105, and 106), and 80 % of these data were uti-

lized as training data for the learning models. The re-

maining 20% were employed as the test (validation)  
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Table 1 Descriptive statistics (continuous variables) 

Variable Min Max Median Mean SD 

Rent price 

(yen) 
5250 1250000000 63000 72850 1381893 

Years built 

 (month) 
5 1812 228 236 135.6 

Walk time to 

nearest train 

station (m) 
1 88000 640 781.5 661.3 

Number of 

rooms 
1 50 1 1.48 0.71 

Floor-area 

ratio (%) 
50 1000 200 234.1 130.6 

X (km) −841 783.1 352.2 181.5 273.3 

Y (km) 2958 5029 3931 3942 195.3 

The “rent price” includes maintenance fees. 

Table 2 List of explanatory variables (discrete variables) 

Variable Category 

Direction North, Northeast, East, Southeast, South, South-

west, West, Northwest, Other 

Building 

structure 

W ， B ， S ， RC ， SRC ， PC ， HPC ，  

LS，ALC，RCB，Others 

Room 

layout 

R, K, SK, DK, SDK, LK, SLK, LDK, SLDK 

Use 

district 

Category Ⅰ exclusively low residential zone (1 

Exc Low), Category II exclusively low residen-

tial zone (2 Exc Low),  Category Ⅰ exclusively 

high-medium residential zone (1 Exc Med), Cate-

gory II exclusively high-medium residential zone 

(2 Exc Med), Category I residential zone (1 Res), 

Category II residential zone (2 Res), Quasi-resi-

dential zone (Quasi-Res), Neighborhood commer-

cial zone (Neighborhood Comm), Commercial 

zone (Commercial), Quasi-Industrial zone (Quasi-

Ind), Industrial zone (Industrial), Exclusive indus-

trial zone (Exc Ind), Others (Others) 

For building structure: W: Wooden; B: Concrete block; S: Steel 

frame; RC: Reinforced concrete; SRC: Steel frame reinforced con-

crete; PC: precast concrete; HPC: Hard precast concrete; LS: Light 

steel, RCB: Reinforced concrete block 

For room layout: The R refers to a room where there is only one 

room and there is no wall to separate the bedroom from the kitchen. 

For the others, K: includes a kitchen; D: includes a dining room: L: 

includes a living room; S: additional storage room. For example, 

LDK is a Living, Dining, and Kitchen area.  

For use district: Category I exclusively low residential zone, Cat-

egory II exclusively low residential zone, Category I exclusively 

medium-high residential zone, Category II exclusively medium-

high residential zone, Category I residential zone, Category II res-

idential zone, Quasi-residential zone, Neighborhood commercial 

zone, Commercial zone, Quasi-industrial zone, Industrial zone, Ex-

clusively industrial zone 

data to assess the predictive accuracy. Thus, the bal-

ance of sample sizes for the training and testing data 

followed three patterns: 8,000 vs. 2,000, 80,000 vs. 

Table 3 Descriptive statistics (discrete variables) 

Direction Structure 

Category Count Share Category Count Share 

North 156843 0.0342   W 1024081 0.2232 

Northeast 81173 0.0177   B 570 0.0001 

East 595252 0.1297   S 844184 0.1840 

Southeast 473041 0.1031   RC 1892428 0.4124 

South 1749315 0.3812   SRC 190048 0.0414 

Southwest 458125 0.0998   PC 11924 0.0026 

West 404994 0.0883   HPS 802 0.0002 

Northwest 78836 0.0172   LS 559974 0.1220 

Others 591053 0.1288   ALC 58373 0.0127 

RCB 597 0.0001 

Others 5651 0.0012 

Use district Room layout 

Category Count Share Category Count Share 

1 Exc Low 780638 0.1701   R 423815 0.0924 

2 Exc Low 25793 0.0056   K 1729903 0.3770 

1 Exc Med 689879 0.1503   SK 6919 0.0015 

2 Exc Med 321441 0.0701   DK 890584 0.1941 

1 Res 1030319 0.2245   SDK 5123 0.0011 

2 Res 211076 0.0460   LK 516 0.0001 

Quasi-Res 59863 0.0130   SLK 138 0.0000 

Neighbor-

hood Comm 
386531 0.0842  LDK 1505821 0.3282 

Commercial 615630 0.1342   SLDK 25813 0.0056 

Quasi-Ind 371672 0.0810   

Industrial 83826 0.0183   

Exc Ind 11949 0.0026   

Others 15 0.0000   

20,000, and 800,000 vs. 200,000. Due to the com-

pletely random sampling, no containment relations 

were possible where, for instance, 104 samples were 

contained in 105 samples. However, as the data size 

was sufficiently large, a quite low probability exists 

for the sample bias to conceal any trends. Thus, this 
study design (based on complete random sampling 

instead of conditionalization) would not significantly 

affect the results. Further, OLS, NNGP, RF, and 

XGBoost were estimated using R language, whereas 

the DNN was estimated using Python. However, to 

use the same random numbers for R and Python, a 

reticulate package that provides an R interface for Py-

thon modules, classes, and functions was used. 

Further, for assessing the predictive accuracy, the 
following error measures were used: the mean abso-

lute error (MAE), root mean squared error (RMSE), 

and mean absolute percentage error (MAPE). Here, 

𝑦m and ym represent the out-of-sample predictive and 

observed values, respectively, for the mth data. How-

ever, the first two measures may be affected by out- 

liers for skewed distributions because it is unlikely 
that the noise will be Gaussian with constant vari-

ance. Moreover, calculating the RMSE on a skewed 

response variable will cause the resulting statistic to 
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be driven primarily by the observations of the highest 

magnitude (see descriptive statistics). Thus, all error 

measures were calculated while keeping ym log-trans-

formed. However, MAPE for log-transformed varia-

bles cannot be interpreted as percentages55). Hence, 

we also calculated the MAPE for the real scale. 

𝑀𝐴𝐸 =  
1

𝑀
∑ |𝑦𝑚  −  𝑦̂𝑚|

𝑀

𝑚=1

, (11) 

𝑅𝑀𝑆𝐸 =  √
1

𝑀
∑ (𝑦𝑚  −  𝑦̂𝑚)2

𝑀

𝑚=1

, (12) 

𝑀𝐴𝑃𝐸 =  
100

𝑀
∑ |

𝑦𝑚  −  𝑦̂𝑚

𝑦𝑚
|

𝑀

𝑚=1

. (13) 

(3) Model setting

In this section, we describe the settings of each

model, that is, for OLS, NNGP, RF, XGBoost, and 
DNN. The descriptions for OLS, NNGP, and DNN 

are similar to those in Seya and Shiroi (2021)1), but 

we repeat them to maintain the consistency of this ar-

ticle. 

a) OLS

The variables are presented in Table 1. The rent

price was used as the dependent variable. The other 

variables, except the X and Y coordinates, were used 

as explanatory variables. Table 4 presents the OLS 
results for n = 106. The adjusted R2 value was found 

to be 0.5165.  

b) NNGP

The full Bayesian NNGP is theoretically sound for

estimation and prediction. However, as this study

employs massive data, the conjugate NNGP pro-

posed by Finley et al. (2017)15) was used to aid in the

reduction of the computational cost (see Subsection

3.1). The conjugate NNGP allows the acceleration of
drawing samples by assuming 𝛼 and 𝜙 to be known.

Finley et al. (2017)15) proposed assigning values to

𝛼 and 𝜙 using a grid point search algorithm, which is

based on the cross-validation (CV) score. However,

the while performing a grid-point search for n = 106

the computational load it quite high. Therefore, an

ad-hoc strategy was adopted in this study while as-

signing values to  𝛼 and 𝜙, as detailed by Seya and

Shiroi (2021)1). This was realized by using the

spConjNNGP function in the spNNGP package of R.

The determination of the number of nearest neigh-
bors for consideration is required when employing

the NNGP; thus, based on the CV, the number of

nearest neighbors was set to 301).

c) RF

In this subsection, we describe the model setup for

RF, estimated using the R package ranger56), which

allows for the fast implementation of RF on high-

Table 4 Regression analysis results using OLS (in the case of n 

= 106) 

Variables Estimate t-values

Constant term 1.08 × 101 4.50 × 103 *** 

Years built –1.15 × 10–3 –4.42 × 102 ***

Walk time to nearest 

station 
–4.88 × 10–5 –9.87 × 101 ***

Floor-area ratio 1.30 × 10–3 2.30 × 102 *** 

Number of rooms 1.49 × 10–1 2.57 × 102 *** 

Direction_Northeast 8.09 × 10–2 2.80 × 101 *** 

Direction_East –4.45 × 10–3 –2.32 × 100 *

Direction_Southeast 5.40 × 10–3 2.72 × 100 ** 

Direction_South –2.33 × 10–2 –1.29 × 101 ***

Direction_Southwest 2.46 × 10–3 1.23 × 100 

Direction_West 1.94 × 10–3 9.67 × 100 *** 

Direction_Northwest 7.39 × 10–2 2.53 × 101 *** 

Direction_Others –6.85 × 10–2 –3.53 × 101 ***

Structure_B 1.88 × 10–1 6.39 × 100 *** 

Structure_S 9.41 × 10–2 9.39 × 101 *** 

Structure_RC 2.40 × 10–1 2.71 × 102 *** 

Structure_SRC 3.67 × 10–1 2.06 × 102 *** 

Structure_PC 2.14 × 10–1 3.48 × 101 *** 

Structure_HPC 9.13 × 10–2 4.19 × 100 *** 

Structure_LS 5.34 × 10–2 4.75 × 101 *** 

Structure_ALC 9.17 × 10–2 3.19 × 101 *** 

Structure_RCB 1.20 × 10–1 4.55 × 100 *** 

Structure_Others 1.61 × 10–1 1.81 × 101 *** 

Room layout_K 4.22 × 10–2 3.62 × 101 *** 

Room layout_SK 1.10 × 10–1 1.39 × 101 *** 

Room layout_DK 1.37 × 10–1 1.00 × 102 *** 

Room layout_SDK 3.65 × 10–1 3.95 × 101 *** 

Room layout_LK 2.79 × 10–1 1.01 × 101 *** 

Room layout_SLK 3.04 × 10–1 5.75 × 100 *** 

Room layout_LDK 2.76 × 10–1 2.12 × 102 *** 

Room layout_SLDK 6.06 × 10–1 1.39 × 102 *** 

Use district_2 Exc 

Low 
–1.15 × 10–1 –2.72 × 101 ***

Use district_1 Exc 

Med 
–1.52 × 10–1 –1.22 × 102 ***

Use district_2 Exc 

Med 
–2.77 × 10–1 –1.83 × 102 ***

Use district_1 Res –2.36 × 10–1 –1.97 × 102 ***

Use district_2 Res –2.48 × 10–1 –1.38 × 102 ***

Use district_ Quasi-

Res 
–2.92 × 10–1 –9.98 × 101 ***

Use district_ Neigh-

borhood Comm 
–2.63 × 10–1 –1.56 × 102 ***

Use district_ Com-

mercial 
–4.63 × 10–1 –1.83 × 102 ***

Use district_ Quasi-

Ind 
–1.91 × 10–1 –1.26 × 102 ***

Use district_ Indus-

trial 
–2.46 × 10–1 –9.76 × 101 ***

Use district_ Exc Ind –3.17 × 10–1 –5.13 × 101 ***

Use district_Others 5.00 × 10–1 3.57 × 100 *** 

Adjusted R2 0.5165 

* significant at 5%; ** significant at 1%; *** significant at 0.1%.
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dimensional data. According to Probst et al. (2019)57),

RF has several hyperparameters that must be set by

the user. The number of trees (number of trees in the 

forest) must be set sufficiently high, and we set it to 

500, which is a typical default value. The node size 

(minimum number of observations in a terminal 

node) was set to five. This is because it is generally 

considered to produce good results58,59), and a small 

preliminary experiment showed that the prediction 

results are fairly robust to these settings. Further, we 
confirmed that for the hyperparameter mtry (number 

of drawn candidate variables in each split), the de-

fault setting of K/3, where K is the number of explan-

atory variables, results in poor performance for some 

models (RF_si). Therefore, we attempted to optimize 

the value of mtry using the caret package in R to per-

form a grid search with fivefold cross-validation in 

the range [3 to K]. The calibration results of the mtry 

are shown in Table 5. For RF_sar and 
RF_sar_coordinates, we employed the R code (rfsi 

function) provided by the developer, and the number 

of nearest neighbors k was also cross-validated in the 

range [3 to 35]. 

d) XGBoost

This subsection describes the model setting for

XGBoost, which has a wider range of hyperparame-

ters that need to be calibrated compared to RF. We

observed that XGBoost performed worse than (well-
tuned) RF when the hyperparameters were set to the

default values of xgboost and better than RF when the

hyperparameters were calibrated using CV. The hy- 

perparameters in xgboost include nround, which con-

trols the maximum number of iterations; max_depth,

which controls the depth of the tree; eta, which con-

trols learning rate; gamma, which controls regulari-

zation; colsample_bytree, which controls the number

of features (variables) supplied to a tree;

min_child_weight, which denotes the minimum num-
ber of instances required in a child node; and subsam-

ple, which is the number of samples (observations)

supplied to a tree. Here, nround must be set to a suf-

ficiently large value, and we set it to 100, considering

the computation time. In addition, we set gamma to

0, indicating no regulation. The others, based on pre-

liminary experiments, were selected from the follow-

ing ranges via a five-fold cross-validated grid search

Table 5 Calibration results of mtry 

mtry n = 104 n = 105 n = 106 

RF_esf 7 - - 

RF_esf_app 7 9 13 

RF_sar_coordinates 3 3 5 

RF_sar 3 3 5 

RF_si 29 51 58 

RF_coordinates 5 5 7 

RF_non_spatial 5 5 7 

using the caret package in R: max_depth = [9, 11, 13], 

eta = [0.1, 0.2], colsample_bytree = [0.8, 1], 

min_child_weight = [0.8, 1], and subsample = [0.8, 

1]. Although these ranges are commonly used, they 

are suboptimal because the calibrated parameters 

may provide an outer rather than an inner solution. 

However, these settings are sufficient to draw the 

conclusion of interest in this study: XGBoost has a 

high performance. 

e) DNN
Several hyperparameters must be determined for

DNNs. This study adopted an efficient optimization 

method called the tree-structured Parzen estimator 

(TPE)60), which can appropriately handle the param-

eter space of the DNN tree structure, which has been 

extensively adopted, with its performance being 

proven to a certain extent60,61). The traditional sig-

moid, hyperbolic tangent, softmax, and recently pop-

ularized rectified linear unit (ReLU) are a few of the 
typical activation functions. ReLU offers a computa-

tional advantage compared to the others as it induces 

sparsity in the hidden units62); furthermore, it accel-

erates convergence owing to the non-saturation of its 

gradient63). Thus, this study adopted ReLU. For the 

optimizer of the DNN, the results obtained using the 

typical algorithms, RMSprop64), and adaptive mo-

ment estimation (Adam)65) have been presented. 

However, techniques designed to prevent overtrain-
ing, such as the introduction of regularized terms and 

dropouts, have not been employed in this study.  

Based on the method described by Seya and Shiroi 

(2021)1), the learning procedures were performed as 

follows. First, considering the tth hyperparameter 

candidate vectors 𝜹𝑡 coupled with the results of ap-

plying five-fold CV with training data for each  𝜹𝑡

(MSE, Eq. 8), a 50-fold search was performed using 

the TPE. Second, using the optimal hyperparameter 

vector and all the training data to assess the predictive 

accuracy of the testing data a model was created once 

again. Moreover, the explanatory variables were 

standardized in advance. We employed Keras for the 

development of a DNN, while Optuna was used for 
the implementation of TPE using Python. 

(4) Prediction results and discussion

a) Regression-based versus ML-based models

The predictive accuracy based on the sample size

for each model is illustrated in Figs. 1 (MAE, RMSE, 

and MAPE for log-scale) and 2 (MAPE for real-

scale). For RF, the results for RF_non_spatial and 

RF_coordinates are shown here. No evident differ-
ences were observed in the predictive accuracy of 

OLD, even if the sample size was increased because 

OLS does not use local spatial information and thus 

has a simple model structure such that n = 104 was 
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sufficiently large to determine the parameters. More-

over, in the case of the real scale, increasing the sam-

ple size resulted in the predictive accuracy reducing 

further. This is because of the increase in the number 

of high-priced properties in the test data. Seya and 

Shiroi (2021)1), who focused on OLS, DNN, and 

NNGP, showed that NNGP performed the best when 

considering the three models for all sample sizes and 

error measures. They concluded that, for rent price 

prediction models using standard explanatory varia-
bles, kriging (NNGP) is useful, provided the sample 

size is moderate (n = 104, 105), whereas DNN may be 

promising if a sufficient sample size is secured (106). 

However, Figs. 1 and 2 show another story. ML 

models—RF_coordinates and XGBoost—performed 

considerably better than NNGP, particularly when 

the sample size was large (n = 106). In fact, XGBoost 

achieved the highest prediction accuracy for all sam-

ple sizes and error measures for both logarithmic and 
real scales and for all price bands (when n = 105, 106) 

(Fig. 3). According to Fig. 1, the MAE of XGBoost 

is less than half that of NNGP when n = 106. These 

results show that although regression-based ap-

proaches have merit in terms of attribution, for pure 

prediction purposes, ML approaches, specifically 

XGBoost, have an advantage. 

b) Differences by method for considering the spa-

tial dependence
The predictive accuracy by sample size for each

method considering spatial dependence is shown in

Fig. 4 (log-scale). It is evident that RF_coordinates

performed the best (or at least the second-best) for all

sample sizes and error measures. For all methods, ex-

cept RF_esf_app, considering spatial dependence im-

proved the predictive accuracy. RF_si outperformed

the RF_sar. This implies that the weighted average

need not be considered when introducing observa-

tions at neighboring sites. In fact, the introduction of

Wy worsens the predictive accuracy for higher- and

lower-end markets (Fig. 5). RF_esf_app performed

poorly, although RF_esf performed better than

RF_coordinates for n = 104. These results may have

shown that simply adding spatial coordinates to ex-

planatory variables would be a plausible option to

consider spatial dependence in RF.

Fig.1 Prediction results by sample size for each model (log-

scale): (a) MAE, (b) RMSE, and (c) MAPE 

Fig.2 Prediction results by sample size for each model (real-

scale) 

Fig.3 MAPE per log rent range (in the case of n = 106) 

Fig.4 Prediction results by sample size for each method of con-

sidering spatial dependence (log-scale): (a) MAE, (b) RMSE, and 

(c) MAPE
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Fig.5 MAPE per log rent range for each method of considering 

spatial dependence (in the case of n = 106) 

5. CONCLUSION

The limitations of existing studies, which have the 

predictive accuracy of real estate sales and rent prices 

between regression- and ML-based approaches, are 

the use of small sample sizes and the disregard for 
spatial dependence, which is an essential characteris-

tic of real estate properties. This study compared and 

discussed the rent price prediction accuracy of re-

gression- and ML-based approaches by extending the 

work of Seya and Shiroi (2021)1) and employing var-

ying sample sizes in a varying order (n = 104, 105, and 

106).  

For the regression-based approach, the NNGP 

model, which enables the application of kriging to 
large data, was employed. Meanwhile, for the ML-

based approaches, certain representative models, 

namely, XGBoost, RF, and DNN, were employed. To 

achieve empirical validation, the LIFULL HOME da-

taset for apartment rent prices in Japan was used in 

this study. The dataset includes the following varia-

bles: rent, lot size, location (municipality, zip code, 

nearest station, and walk time to the nearest station), 

year built, room layout, and building structure. Fur-
ther, the out-of-sample predictive accuracies of the 

models were compared. 

Although Seya and Shiroi (2021)1) found that 

NNGP outperformed DNN, particularly when rent 

prices were around the median, our comparison re-

vealed another story. Our analysis results showed 

that, with an increase in sample size, the out-of-sam-

ple predictive accuracy of XGBoost and RF was 

higher than that of NNGP. In fact, the performance of 

XGBoost was the best for all sample sizes. Thus, the 
results suggest that, although regression-based ap-

proaches have merit in terms of attribution, ML ap-

proaches, specifically XGBoost, have an advantage 

for pure prediction purposes. We also compared sev-

eral methods to consider the spatial dependence with 

RF and found that simply adding spatial coordinates 

to explanatory variables can be a plausible option. 

In future work, it may be important to establish an 

effective means to set NNGP hyperparameters. Fur-

ther, it may also be interesting to use other neural net-

work models, including graph convolutional net-

works. In addition, it is important to conduct experi-

ments with several explanatory variables by using, 
for instance, pictures that show the floor plans and 

interior details of each property. Finally, it may be 

useful to consider spatial dependence when conduct-

ing validation66). 
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