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This article reveals some unstudied solutions patterns in dynamic user equilibrium with route and depar-
ture-time choice (DUE-RDC) traffic assignment in many-to-one corridor networks with irregular ordered 
bottleneck capacities. We develop a critical network obtained from the original network and give some 
numerical examples and a case-specific theoretical proof of the resemblance between the critical and orig-
inal network. These enable us to expand the understandings of the DUE-RDC model in many-to-one 
corridor networks, which could be a building block for analyzing general dynamic assignment problems. 
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1. INTRODUCTION 
 

Dynamic User Equilibrium with Route and 
Departure-Time Choice (DUE-RDC) assignments 
for a large-scale network is difficult to obtain for its 
nonlinear characteristic, and thus a great deal of 
research has been conducted to develop an efficient 
and general solution method for this problem. In the 
present article, we aim to show different assignment 
patterns in a corridor network to help better 
understand the essential aspect of DUE-RDC and 
find a possible direction for some efficient methods 
in the future research.  

Some of related literatures are in order. Akamatsu 
et al. (2015) analyzed corridor network with multiple 
bottlenecks under the Lagrangian-like coordinate 
formulation and provided rigorous results on the 
existence and uniqueness of equilibria. Fu et al. 
(2021) proved DSO with a certain route pass permit 
price is identical with DUE in corridor networks 
under certain circumstances regarding to the 
schedule cost function. Nagae et al. (2020) proposed 
generalized linear complementarity problem 
(GLCP) and solved the DUE problem with route and 
departure time choice in Many-to-One (M2O) and 
One-to-Many (O2M) traffic networks. 

The present article reveals that some unresearched 
DUE-RDC solution patterns could exist for many-to-
one corridor networks with irregular order of 
bottleneck capacities. Our analyses show that some 
“exclusive” departure time choices could happen and 
there is connection between original network and 
reduced critical network when network has irregular 
capacity patterns. This study could expand the 
understanding of the DUE-RDC assignment in 
simple networks for future method development. 

The remaining of the present article is organized 
as follows. In section 2, we describe the network 
model that is studied in this article and introduce the 
related notations. Section 3 then illustrates the 
solutions patterns that are studied in former research 
and that are found in our research. In section 4, we 
introduce the critical network to analyze the irregular 
solution patterns and show some numerical 
examples. Section 5 concludes. 
 
 
2. MODEL 
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Fig.1 Corridor network with N origins and 1 destination. 
 

Suppose a many-to-one (M2O) corridor network 
illustrated as Fig.1 with N origins, N links and one 
destination. Let 𝑖 = 0  be the (single) destination 
and let 𝒩 and ℒ denote the set of origins and links. 
𝑄! (𝑖 = 1, 2, … ,𝑁) is the total demand from origin 𝑖 
to the destination in the planning horizon 𝒯 =
[𝑇", 𝑇#]. 𝑐! and 𝜇! (𝑖 = 1, 2, … ,𝑁) denote the free 
flow travel time and capacity of link 𝑖 (𝑖 ∈ ℒ). 𝜌4! 
denotes the equilibrium travel disutility of origin 
node 𝑖  in DUE-RDC assignment.	 𝜓(𝑡)	 denotes	
the	schedule	cost	function	that	describes	the	cost	
of	users	arrive	at	the	destination	at	time	 𝑡,	which	
might	be	either	earlier	or	 later	than	the	desired	
arrival	time	 𝑡$ .	

In a Lagrangian-like coordinate system, this 
article uses the notations of link flow 𝑦!(𝑡) on link 
𝑖, departure flow 𝑞!(𝑡) from node 𝑖, shortest travel 
time 𝜋4!(𝑡) from node 𝑖  in DUE assignment, 
bottleneck departure time 𝜎4!(𝑡)  from 𝜇!  and 
queue waiting time 𝑤!(𝑡) at bottleneck 𝜇!; time 𝑡 
in these notations are denoted as the destination 
arrival time instead of clock time. As free flow travel 
time being constant, this article also uses 𝜋!(𝑡) =
𝜋4!(𝑡) − �̂�!(𝑡)	 , 𝜎!(𝑡) = 𝜎4!(𝑡) − �̂�!(𝑡)  and 𝜌!(𝑡) =
𝜌4!(𝑡) − �̂�!(𝑡) in which  

�̂�!(𝑡) =U 𝑐%(𝑡)
%&!

 

to denote the variable factors to exclude the constant 
values. The relationship between travel time and 
destination arrival time is illustrated in Fig. 2. 

Under this network definition, we have: 
𝜎4!(𝑡) = 𝑡 − 𝜋4!(𝑡) + 𝑤!(𝑡) = 𝑡 − 𝜋4!'"(𝑡) − 𝑐! 	(2a) 
 
And also, the differential of equation (2a): 
Δ𝜎4!(𝑡) = Δ𝜎!(𝑡) = 1 − Δ𝜋!(𝑡) + Δ𝑤!(𝑡)					 

= 1 − Δ𝜋!'"(𝑡)           (2b) 
 

In the above framework, the DUE-RDC 
assignment model is formulated as a generalized 
linear complementarity problem (GLCP) from Eq. 
(2c) to Eq. (2g). The DUE-RDC conditions consist 
of the conditions for the optimum departure time 
choice (2c), the optimum route choice (2d), the 
queue waiting time dynamics (2e), the link flow 
reservation (2f), the total flow reservation (2g) and 
the fist-in-first-out constraint (2h). 

0 ≤ 𝑞!(𝑡) ⊥ {𝜋!(𝑡) + 𝜓(𝑡) − 𝜌!} ≥ 0     (2c) 
0 ≤ 𝑦!(𝑡) ⊥ {−𝜋!(𝑡) + 𝜋!'"(𝑡)+𝑤!(𝑡) } ≥ 0 

(2d) 
0 ≤ 𝑤!(𝑡) ⊥ ]𝜇!^1 − Δ𝜋!'"(𝑡)_ − 𝑦!(𝑡)` ≥ 0		 

(2e) 
0 ≤ 𝜋!(𝑡) ⊥ {𝑦!("(𝑡) + 𝑞!(𝑡) − 𝑦!(𝑡)} ≥ 0		 (2f) 

0 ≤ 𝜌! ⊥ {∫ 𝑞!(𝑡)𝑑𝑡 − 𝑄!} ≥ 0)!
)"

          (2g) 

	Δ𝜋!(𝑡) ≥ −1				                        (2h) 

 
Fig.2 𝜋"#(𝑡) with respect to destination arrival time. 

 
 
3. SOLUTION PATTERNS 
 

In this section, we show several relevant solution 
patterns of the DUE-RDC in a three-link corridor 
network. Several numerical analyses by using Nagae 
et al. (2020) revealed that the DUE-RDC solution 
pattern could be categorized into (i) regular-ordered-
DSO-equivalent solution pattern; (ii) regular-
ordered-DSO-inequivalent solution pattern; and (iii) 
irregular-ordered solution patterns. 

Fig.3 shows (i) regular-ordered-DSO-equivalent 
solution pattern, while Fig.4-6 shows the (ii) regular-
ordered-DSO-inequivalent solution patterns. The 
situation in Fig.3 is analyzed by Fu et al. (2021) 
which is identical to the solution of DSO, when there 
is no false bottleneck and Δ𝜓(𝑡) ≤ 𝜇!/𝜇!("	 −
1	(∀𝑖 ∈ ℒ\{𝑁}, 𝑡 ∈ 𝒯!\𝒯!'") . 𝒯! = [𝑡!', 𝑡!(]  is the 
time period of users from node 𝑖  arriving at the 
destination and 𝝉𝒊 = (𝜏!', 𝜏!() is defined as the time 
period when 𝜋!(𝑡) > 0.  

Situation in Fig.4-6 shows the DSO-inequivalent 
DUE-RDC solutions. In Fig.4, 𝑡"( = 𝑡#(, that is, the 
latest arrival time from node 1 and 2 are identical. 
This case occurs when 

Δ𝜓(𝑡) ≤
𝜇"
𝜇#
− 1, 𝑡 ∈ [𝑡$ , 𝑡"(] 

Δ𝜓(𝑡) >
𝜇#
𝜇,
− 1, 𝑡 ∈ [𝑡"(, 𝑡#(]. 

In this case, the second condition makes the 
decreasing rate of the queue waiting time on link 2 
smaller than the increasing rate of the schedule cost, 
and thus no users from node 2 arrives at the 
destination after 𝑡"(.  

In Fig.5, 𝑡"( = 𝑡$ and 𝑡#( = 𝜏"(, that is, no user 
from node 1 arrives after the desired arrival time and 
the users from node 2 arrive before the queue on link 
1 is vanished. This case occurs when 

Δ𝜓(𝑡) >
𝜇"
𝜇#
− 1, 𝑡 ∈ [𝑡$ , 𝜏"(] 

Δ𝜓(𝑡) ≤
𝜇"
𝜇,
− 1, 𝑡 ∈ [𝑡$ , 𝜏"(] 

Δ𝜓(𝑡) >
𝜇#
𝜇,
− 1, 𝑡 ∈ [𝜏"(, 𝑡,(]. 

In this case, the first and the third condition make the 
decreasing rate of the queue waiting time on link 1 
and link 2 smaller than the increasing rate of the 
schedule cost after 𝑡$ and 𝜏"(, respectively. Thus, 
no users from node 1and 2 arrives at the destination 
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after 𝑡$ and 𝜏"(. 
In Fig.6, 𝑡"( = 𝑡#( = 𝑡$, that is, whole of the users 

from node 1 nor node 2 arrive the destination before 
the desired arrival time. This case occurs when 

Δ𝜓(𝑡) >
𝜇"
𝜇#
− 1, 𝑡 ∈ [𝑡$ , 𝜏"(] 

Δ𝜓(𝑡) >
𝜇"
𝜇,
− 1, 𝑡 ∈ [𝑡$ , 𝜏#(]. 

In this case, both two conditions make the decreasing 
rate of the queue waiting time on link 1 and link 2 
smaller than the increasing rate of the schedule cost 
after 𝑡$, so no users from node 1 and node 2 arrives 
at the destination after 𝑡$. 

We refer the above cases as the regular-ordered 
(RO) capacity patterns, in which 𝜇" > 𝜇# > 𝜇,. In 
this situation, we always have 𝒯" ⊂ 𝒯# ⊂ 𝒯,  and 
also 𝝉𝟏 ⊂ 𝝉𝟐 ⊂ 𝝉𝟑 . And 𝒯! = 𝒯!("  ( 𝑖, 𝑖 + 1 ∈ 𝑁 ) 
happens when bottleneck 𝑖 + 1 is vanished, which 
is not discussed in this article. 
 

 
Fig.3 Regular-ordered-DSO-equivalent pattern. 

 
Fig.4 Regular-ordered-DSO-inequivalent patterns case 1. 

 

 

Fig.5 Regular-ordered-DSO-inequivalent patterns case 2. 
 

 
Fig.6 Regular-ordered-DSO-inequivalent patterns case 3. 

 
In the general understanding, the corridor network 

should be a RO network, which means the traffic link 
that close to the destination must have larger traffic 
capacity because of the flow accumulation from 
upstream, else it would be a false bottleneck with no 
queue happening at any time point. But with a certain 
demand pattern, some non-trivial DUE-RDC 
solution exist in the irregular ordered (IrO) capacity 
patterns where no bottleneck is false. 

Fig.7 shows an illustrative example in the IrO 
capacity patterns, like 𝜇" < 𝜇# < 𝜇,, in which the 
arrival time window of node 1 and 2 are “exclusive” 
each other, i.e., 𝒯" ∩ 𝒯# = ∅. And also, we can have 
𝝉" = 𝝉# = 𝝉, (proof see Appendix A). 

Fig.8 shows another IrO case with 𝜇# > 𝜇" > 𝜇,, 
where 𝝉" = 𝝉# ⊂ 𝝉,  (proof see Appendix B), and 
the arrival time windows are not exclusive but the 
fastest arrival time does not fit to the schedule cost 
function. 

In the flow pattern of Fig.7 and Fig.8, the waiting 
time on some downstream links grows before there 
is departure flow on the origin of this link, and it is 
because the upstream link has greater link capacity 
and the outflow of the fully occupied (𝑤!(𝑡) > 0) 
upstream link exceeds the downstream link capacity. 
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Fig.7 IrO capacity pattern 𝜇$ < 𝜇% < 𝜇&. 

 

 
Fig.8 IrO capacity pattern 𝜇% > 𝜇$ > 𝜇&. 

 
 
4. CRITICAL NETWORK ANALYSES 

FOR THE CASE WITH IRREGULAR 
ORDRED CAPACITIES 

 
We also found that the above irregular solution 

patterns correspond to those of “critical network,” 
which can be regarded as a reduced form of the 
origin corridor network and consists of only critical 
bottlenecks in the original network (every bottleneck 
in the original network can be either critical 
bottleneck or non-critical bottleneck).  

The critical network can be constructed by the 
following procedure. We first pick up the critical 
bottlenecks from the original network. A bottleneck 
𝑖 is defined as “critical” if its capacity is smaller than 
those of the downstream nodes, i.e.: 

𝜇! = 𝑚𝑖𝑛]𝜇%o 	𝑗 ∈ ℒ, 𝑗 ≤ 𝑖} 

 
Let 𝒓 = (𝑟", 𝑟#, … , 𝑟0)  be the list of the critical 
bottlenecks, and it is obvious that 𝑘 ≤ 𝑁. We then 
aggregate the demand from the non-critical node to 
the critical node via the following rule: 

⎩
⎪
⎨

⎪
⎧𝑄x1' = U 𝑄%

1'&%21'("

, ∀𝑖 < 𝑘	𝑎𝑛𝑑	𝑗 ∈ 𝒩

𝑄x1) = U 𝑄%
1)&%&3

																								 , 𝑗 ∈ 𝒩	
 

 
It is obvious that (i) the bottleneck capacity is 

always in regular order in the critical network; and 
(ii) the critical network of a RO network is identical 
to the original network. 

By using the critical network with 𝑘 links and 𝑘 
origins with link capacity and traffic demand of 𝜇1' 
and 𝑄x1'  (𝑖 = 1,… , 𝑘), we can “outline” the DUE-
RDC solution of the original network. 

Fig.9 is an example of critical network obtained 
from a 5-origin corridor network using the method 
discussed above. 

From the GLCP method of the original network 
and the critical network, we give a theoretically 
prove of the relationship between original and criti-
cal network with the original capacity pattern of  
𝜇" < 𝜇# < 𝜇, (see Appendix D). 

This article gives some numerical examples to 
show the relationship mentioned above. Consider a 
three-link M2O corridor network with bottleneck 
capacity (𝜇", 𝜇#, 𝜇,) = (60, 75, 90) , demand 
(𝑄", 𝑄#, 𝑄,) = (3, 5, 60), and early arrival cost (Ec) 
and late arrival cost (Lc) being (Ec, Lc) = (0.5, 1.2) 
(Ec and Lc are the coefficients of schedule cost 
function in a linear situation with 𝛥𝜓(𝑡) =
−𝐸𝑐, 𝑡 < 𝑡$  and 𝛥𝜓(𝑡) = 𝐿𝑐, 𝑡 > 𝑡$ ). We can 
easily obtain the critical network of this three-link 
network, which is a one-link corridor network with 
𝜇" = 60 and 𝑄x" = 68 . Traffic assignment of 
original and critical network is illustrated in Fig.10 
and Fig.11. From the output we can have: 

𝜌, = �̅�" = 24  
𝑦"(𝑡) = 𝑦x"(𝑡), 𝑓𝑜𝑟	𝑡 ∈ 𝒯 

 
 

 
Fig.9 An example of critical network. 
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Fig.10 Origin network assignment with 𝜇$ < 𝜇% < 𝜇& 

 

 
Fig.11 Critical network assignment with 𝜇$ 
 

In the case of a network with link capacity  
(𝜇", 𝜇#, 𝜇,) = (60, 75, 50)  which is the case of 
𝜇# > 𝜇" > 𝜇, , and (𝑄", 𝑄#, 𝑄,) = (5, 10, 60) , the 
critical network is demonstrated as (𝜇", 𝜇,) =
(60, 50) and (𝑄x", 𝑄x,) = (15, 60). The assignment 
of original network and critical network is illustrated 
in Fig.12 and Fig.13. And also, the relationship be-
tween these two networks is denoted as follow: 

𝑦"(𝑡) = 𝑦x"(𝑡), 𝑓𝑜𝑟	𝑡 ∈ 𝒯 
𝑦,(𝑡) = 𝑦x,(𝑡), 𝑓𝑜𝑟	𝑡 ∈ 𝒯 
𝜌# = �̅�" = 12.84  
𝜌, = �̅�, = 28.26  

 

 
Fig.12 Original network assignment with 𝜇% > 𝜇$ > 𝜇&  

 

 
Fig.13 Critical network assignment with 𝜇$ > 𝜇&  

 
The relationship between the origin network and 

the critical network can be described as the critical 
network is the main structure of origin network. 
Every bottleneck in the critical network is the most 
downstream bottleneck and also has the minimum 
capacity on the critical link, so that it decides the 
flow departure rate and the departure time window 
on this link. Other links and nodes that are reduced 
in obtaining the critical network can be regarded as 
sharing the bottleneck capacity in a certain time 
period. Solving an IrO capacity pattern corridor 
network can be reduced to solve its critical network 
instead.  
 
 
5. CONCLUSION 
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In this article, we showed several DUE-RDC 

solution patterns that cannot be explained in analogy 
of the DSO in the many-to-one corridor network. 
Especially, we showed that the DUE-RDC solution 
could have “exclusive” solution pattern in the 
network with irregular-ordered bottleneck capacities. 
We also proposed a critical network analyses by 
reducing the original network. Numerical results 
shows that the critical network could outline the 
DUE-RDC solutions of the original network. The 
detailed analyses in the traffic assignment on the 
links with non-critical bottlenecks is surely 
important and necessary though, it is beyond of the 
scope of the present article. 

With the study of the irregular-ordered capacity 
pattern, we can extend our understanding to the DUE 
assignment. Future study in generalized networks 
should pay attention to the irregular-ordered capacity 
patterns. And also, by applying the critical network, 
we may be able to simplify our work in finding the 
efficient DUE solution. 
 
 
APPENDIX A 
 

Proof of 𝝉𝟏 = 𝝉𝟐 = 𝝉𝟑 when 𝜇" < 𝜇# < 𝜇,. 
In a corridor network defined in section 2, we 

always have 𝜋!(𝑡) ≥ 𝜋%(𝑡)  if 𝑖 > 𝑗 . So, in the 
above mentioned three-link network, 𝜋,(𝑡) ≥
𝜋#(𝑡) ≥ 𝜋"(𝑡), and 𝝉𝟏 ⊆ 𝝉𝟐 ⊆ 𝝉𝟑 is always true.  

Using proof by contradiction, assume 𝝉𝟐 ⊂ 𝝉𝟑, so 
we can find a time point 𝑡4 that: 

𝜋,(𝑡4) > 𝜋#(𝑡4) = 𝜋"(𝑡4) = 0. 
Since 𝑤,(𝑡4) = 𝜋,(𝑡4) − 𝜋#(𝑡4) > 0 , according 
to equation (2e): 

𝑦,(𝑡4) = 𝜇,^1 − Δ𝜋#(𝑡)_ = 𝜇,. 
Also, 𝑦#(𝑡4) = 𝑦,(𝑡4) + 𝑞#(𝑡)  derives 𝑦#(𝑡4) ≥
𝑦,(𝑡4) = 𝜇,.  
And since 𝑤#(𝑡4) = 𝜋#(𝑡4) − 𝜋"(𝑡4) = 0, flow on 
link 2: 

𝑦#(𝑡4) < 𝜇#^1 − Δ𝜋"(𝑡)_ = 𝜇#. 
And because of 𝜇, > 𝜇#, there is contradiction, 

so that 𝝉𝟐 ⊂ 𝝉𝟑 is false. So, 𝝉𝟐 = 𝝉𝟑. In the same 
method, we can obtain 𝝉𝟏 = 𝝉𝟐. 
 
 
APPENDIX B 
 

Proof of 𝝉𝟏 = 𝝉𝟐 ⊂ 𝝉𝟑 when 𝜇, < 𝜇" < 𝜇#. 
The proof of 𝝉𝟏 = 𝝉𝟐 is similar to Appendix A. 

Here we use proof by contradiction to prove 𝝉𝟐 ⊂
𝝉𝟑.  

Assume 𝝉𝟐 = 𝝉𝟑, because of 𝝉𝟐 = 𝝉𝟏, we have 
𝝉𝟏 = 𝝉𝟐 = 𝝉𝟑. Under this assumption, there must be 
𝜋,(𝑡) ≥ 𝜋#(𝑡) ≥ 𝜋"(𝑡) > 0  for any 𝑡 ∈ 𝝉𝟑 . For 

there is no bottleneck vanishment in this network, 
then 𝜌, > 𝜌# > 𝜌". So, there must exist a time point 
𝑡5 ∈ 𝝉𝟑 that 𝑞,(𝑡5) > 0 and 𝑞#(𝑡5) = 𝑞"(𝑡5) =
0. And in time 𝑡6, link flow: 

𝑦"(𝑡5) = 𝑦#(𝑡5) = 𝑦,(𝑡5) = 𝑞,(𝑡5) ≤ 𝜇,. 
And because 𝜋"(𝑡5) = 𝑤"(𝑡6) > 0 , according to 
equation (2e): 

𝑦"(𝑡5) = 𝜇" > 𝜇,. 
There is contradiction, so the assumption is false, 

𝝉𝟐 ⊂ 𝝉𝟑. 
 
 
APPENDIX C 
 
Proof of 𝑞,(𝑡) > 0		(∀𝑡 ∈ 𝝉𝟑)  in a three-link 
corridor network.  
Using proof by contradiction, assume there is time 
point 𝑡7  that 𝑡7 ∈ 𝝉𝟑  and 𝑞,(𝑡7) = 0 . Because 
link 3 has no upstream links, 𝑦,(𝑡7) = 𝑞,(𝑡7) = 0, 
which derives 𝑤,(𝑡7) = 0. According to equation 
(2d): 

𝜋,(𝑡7) < 𝜋#(𝑡7). 
There is contradiction, so the assumption is false. 

 
 
APPENDIX D 
 

For a three-link corridor network with 𝜇" < 𝜇# <
𝜇,  and (𝑄", 𝑄#, 𝑄,), its critical network is a one-
link corridor with link capacity 𝜇"  and demand 
𝑄x" = 𝑄" + 𝑄# + 𝑄, . As we obtained in section 3, 
𝝉𝟏 = 𝝉𝟐 = 𝝉𝟑. Link flow 𝑦"(𝑡) on original network, 
according to equation (2e): 

𝑦"(𝑡) = �𝜇", 𝑓𝑜𝑟	𝑡 ∈ 𝝉𝟏
0,					𝑓𝑜𝑟	𝑡 ∈ 𝒯\𝝉𝟏

. 

 
And also, 

𝑦"(𝑡) = 𝑞"(𝑡) + 𝑞#(𝑡) + 𝑞,(𝑡). 
�̅�", 𝑦x"(𝑡) and 𝑞x"(𝑡) denote the minimum travel 

cost, link flow and departure flow in the single link 
of critical network with respect to the destination 
arrival time, 𝝉x𝟏 denotes the time period minimum 
travel cost of node 1 is positive in critical network. 
We can easily have: 

𝑦x"(𝑡) = � 𝜇", 𝑓𝑜𝑟	𝑡 ∈ 𝝉x𝟏
0,					𝑓𝑜𝑟	𝑡 ∈ 𝒯\𝝉x𝟏

. 

 
So that 𝑦"(𝑡) = 𝑦x"(𝑡)	(𝑡 ∈ 𝒯) . And 𝑦x"(𝑡) =

𝑞x"(𝑡).With the total flow reservation rule (2.7): 

� {𝑞"(𝑡) + 𝑞#(𝑡) + 𝑞,(𝑡)}
	

8∈𝝉𝟏
𝑑𝑡 = 𝑄" + 𝑄# + 𝑄, 

 
and also, 

� 𝑞x"(𝑡)
	

8∈𝝉;𝟏
𝑑𝑡 = 𝑄" + 𝑄# + 𝑄,. 
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So that we have 𝝉𝟏 = 𝝉x𝟏. In the last bottleneck of 

the original network, 𝑞,(𝑡) > 0		(∀𝑡 ∈ 𝝉𝟑) (proof 
see Appendix C). Also, 𝑞x"(𝑡) > 0		(∀𝑡 ∈ 𝝉x𝟏) . 
According to (2.3) we can have 𝜌, = �̅�". 
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