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In this study, we propose an equal distribution problem for method to evaluate the network connectivity 
using the Laplacian matrix, and discuss why the second minimum eigenvalue of the Laplacian matrix of 
the network represents an indicator of network connectivity. Then, we develop an optimization problem to 
reinforce the road network connectivity using the second minimum eigenvalue of its Laplacian matrix, and 
prove that it is formulated as a convex optimization problem. Furthermore, we show that the optimization 
problem is also formulated as a semi-definite programming, which is an extension of linear programming. 
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1. INTRODUCTION 
 

Japan has been struck by several huge earthquakes, 
such as Hyogoken-Nambu Earthquake in 1995, the 
Great East Japan Earthquake in 2011 and most re-
cently the 2016 Kumamoto Earthquake. In the event 
of a natural disaster, some roads are sometimes de-
stroyed, causing many problems in evacuating people 
rapidly and transporting relief supplies. Additionally, 
troubles with the road network can have serious con-
sequence for society and for the business community 
over the wide areas. Thus, we need to improve the 
connectivity of the road network so that passable 
roads connect principal (disaster) bases even in the 
events of natural disasters. It is substantially im-
portant to evaluate the network connectivity quanti-
tatively, and, then, the evaluation of connectivity is 
one guide for preparations for disasters. For example, 
we can make a reinforcement plan of the road net-
work to effectively improve the connectivity or take 
measures to prevent disaster damage to vulnerable 
sections of the network.  

There are dozens of connectivity indicators. Con-
nectivity has often been quantified as a passable 
probability between a pair of origin and destination 

in the road network (e.g. Bell & Iida, 1997). It is 
highly demanding to calculate the passable probabil-
ities of all origin-destination pairs (ODs).  

As other indicators, Kurauchi et al. (2009) evalu-
ated the interconnectivity between cities based on the 
number of distinct paths that connect ODs and eval-
uated the vulnerability based on the number of exclu-
sive paths that have been reduced because of disrup-
tion of each link. The evaluation is performed based 
on the idea of an n-connected network, which indi-
cates that the connection between ODs is guaranteed 
even if n − 1 links are disrupted (Grötschel, 1995).  

Clustering is an approach to find links or node sets 
that have strong and efficient connectivity (e.g. von 
Luxburg, 2007). Then, links between the clusters is 
critical because their disruption contribute to the di-
vision of the network. Demsar et al. (2008) focused 
on the betweenness centrality, clustering coefficient, 
and cut vertices of the line graph. They verified this 
using the Helsinki network and concluded that the be-
tweenness centrality and cut vertices are useful 
measures for identifying critical locations. Akbarza-
deh et al. (2019) verified that links between the clus-
ters are most critical as compared with other indica-
tors of link importance. 
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Several studies exist which evaluate vulnerable 
links using eigenvalue. Nouzard et al. (2016) identi-
fied the criticality of the links based on the largest ei-
genvalue of the capacity and traffic volume weighted 
adjacent matrix, and detected clusters of the road net-
work by considering the criticality of the weights us-
ing the modularity optimization method. Bell et al. 
(2017) have proposed the identification of flow bot-
tlenecks using capacity-weighted eigenvalue analy-
sis. This method introduces the network partitions ex-
hibiting the least capacity of cutting links by consid-
ering the relative sizes of the subnetworks on either 
side of the cut. The advantage of this approach that 
uses eigenvalue analysis is that it is possible to iden-
tify potential bottlenecks without setting various ODs 
or routes. 

In this study, we focus on the quantitative identifi-
cation of critical roads that affect network connectiv-
ity. In a huge disaster, such as the one that has been 
mentioned previously, it is important to evaluate the 
weakness of large-scale network connectivity with 
large number of links and nodes because of extensive 
damage. One of the tasks is to efficiently identify the 
weaknesses in such networks. In this study, we adopt 
a spectral analysis (eigenvalue analysis) to do so. 
Thus, the objective of this study is to examine a 
method for evaluating network connectivity, based 
on analyses of the eigenvalues of a Laplacian matrix, 
and to verify its usefulness. This method requires 
only the geometrical information about a road net-
work and determines quantitatively which roads have 
the greatest consequences for network connectivity.  

Quantifying the network connectivity only is not 
enough to improve the road network connectivity. It 
is also important to examine an improvement meas-
ure, e.g., to make a reinforcement plan. We propose 
an optimal reinforcement problem for the rod net-
work connectivity using the eigenvalue of its Lapla-
cian matrix. 

First, we present the Laplacian matrix and show 
how to evaluate network connectivity using this 
method. Second, we discuss why the second mini-
mum eigenvalue of the Laplacian matrix of the net-
work represents an indicator of network connectivity. 
Finally, we develop an optimization problem to rein-
force the road network connectivity using the second 
minimum eigenvalue of its Laplacian matrix, and 
prove that it is formulated as a convex optimization 
problem. Furthermore, we show that the optimization 
problem is also formulated as a semi-definite pro-
gramming, which is an extension of linear program-
ming. 
 
 
2. EQUAL DSITRIBUTION PROBLEM 
 

(1) Adjacency, degree, and Laplacian matrices 
A road network is modeled as a plane graph with 

nodes and links. Let 𝑛  denote the total number of 
nodes in a road network. The relationship between 
the links and nodes can be written as an adjacency 
matrix 𝐀, which is a square matrix with 𝑛 rows and 
columns. Let 𝑎  denote the strength to connect 
nodes 𝑖  and 𝑗  (𝑎 ≥ 0 ∀𝑖, 𝑗), and 𝑎  is component (𝑖, 𝑗) of 𝐀. It is assumed in this study that there is no 
loop link whose start and end nodes are the same, and 𝑎 = 0 (𝑖 = 1, 2,⋯ ,𝑛) and that each link is undi-
rected, that is, 𝑎 = 𝑎  (𝑖, 𝑗 = 1, 2,⋯ ,𝑛). Therefore, 

𝐀 = ൦𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ⋮ ⋮ ⋱ ⋮𝑎ଵ 𝑎ଶ ⋯ 𝑎൪= ൦ 0 𝑎ଵଶ ⋯ 𝑎ଵ𝑎ଵଶ 0 ⋯ 𝑎ଶ⋮ ⋮ ⋱ ⋮𝑎ଵ 𝑎ଶ ⋯ 0 ൪ .          (1) 

The degree matrix 𝐃 is a diagonal matrix, each diag-
onal component of which is given as follows: 𝑑 = 𝑎

ୀଵ (2) 

Therefore, 

𝐃 = ൦𝑑ଵ 0 ⋯ 00 𝑑ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝑑൪

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝑎ଵ
ୀଵ 0 ⋯ 0

0 𝑎ଶ
ୀଵ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝑎

ୀଵ ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

. (3) 

The Laplacian matrix 𝐋 is then defined as follows: 𝐋 = 𝐃 − 𝐀 (4) 
In this study, we propose an equal distribution prob-
lem with the Laplacian matrix to characterize and 
quantify the connectivity of the network.  
 
(2) Equal Distribution Problem 

Imagine that (relief) supplies must be distributed 
evenly among the locations in the network in case of 
emergency. The followings are assumed: 
 

A1. Relief supplies must be distributed to all 
nodes in the network 
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A2. The required amount of supplies at the node 
is proportional to the node’s attribute, e.g. 
population at the node 

A3. A part of supplies is transferred to adjacent 
nodes that are suffering worse shortage of 
supplies. 

 
Let 𝑥(𝑡) denote the present amount of supplies at 
node 𝑖 until time 𝑡. The required amount of supplies 
at node 𝑖 is 𝑏.  

In emergency, the relief supplies have to be distrib-
uted. Even though the amount of supplies does not 
reach the required level, they are transferred to an ad-
jacent node if the fulfilment rate at the adjacent node 
is less than that at this node. This is myopic, but, in 
emergency, we only have local information rather 
than full information of the whole network area. 
 

A4. The transfer “strength” is proportional to the 
difference between the fulfilment rates of 
connected two nodes. 

 
The transfer strength of supplies is given by 𝜑→(𝑡) = −𝑎 ቈ𝑥(𝑡)𝑏 − 𝑥(𝑡)𝑏  (5) 

where 𝜑→(𝑡) is the transfer strength from node 𝑖 to 
node 𝑗  at time 𝑡 . Clearly, 𝜑→(𝑡) = 0  and 𝜑→(𝑡) = 𝑎ൣ𝑥(𝑡) 𝑏⁄ − 𝑥(𝑡) 𝑏⁄ ൧. Therefore, for 
any nodes,  𝜑→(𝑡) = −𝜑→(𝑡). (6) 
The time derivative of the amount of supplies on node 𝑖 is given as follows: 𝑑𝑑𝑡 𝑥(𝑡) = 𝜑→(𝑡)

ୀଵ= −𝑎 ቈ𝑥(𝑡)𝑏 − 𝑥(𝑡)𝑏 
ୀଵ (7) 

We can confirm the followings:  𝑑𝑑𝑡 𝑥(𝑡)
ୀଵ = 𝜑→(𝑡)

ୀଵ

ୀଵ = 0, (8) 

because 𝜑→(𝑡) = −𝜑→(𝑡) in Eq. (6) and 𝜑→(𝑡) = 0. This indicates that the total of supplied 
is always constant. Let 𝐱(𝑡) and 𝐱(𝑡) define as fol-
lows: 

𝐱(𝑡) = ൦𝑥ଵ(𝑡)𝑥ଶ(𝑡)⋮𝑥(𝑡)൪ , 𝑑𝑑𝑡 𝐱(𝑡) = ⎣⎢⎢⎢
⎢⎡ ௗௗ௧𝑥ଵ(𝑡)ௗௗ௧𝑥ଶ(𝑡)⋮ௗௗ௧𝑥(𝑡)⎦⎥⎥⎥

⎥⎤ . (9) 

Let 𝐛 be the vector of the required amounts of sup-
plies, whose component is 𝑏. As will be stated in Ap-
pendix, using 𝐱(𝑡) and ௗௗ௧ 𝐱(𝑡), Eq. (7) gives the time 
derivative of 𝐱(𝑡) as follows: 𝑑𝑑𝑡 𝐱(𝑡) = −𝐋𝐁ିଵ𝐱(𝑡) (10) 

where 𝐁ିଵ is the inverse of 𝐁, and 𝐁 = diag(𝐛), 
that is,  

𝐁 = ൦𝑏ଵ 0 ⋯ 00 𝑏ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝑏൪ , (11) 

where diag(𝐛) denotes the diagonal matrix whose di-
agonal components are the components of 𝐛. Let 𝐱(𝑡) = 𝐁భమ𝐲(𝑡), (12) 
where  

𝐁భమ = ⎣⎢⎢
⎢⎡ඥ𝑏ଵ 0 ⋯ 00 ඥ𝑏ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ ඥ𝑏⎦⎥⎥

⎥⎤ . (13) 

Substituting Eq. (11) into Eq. (9) yields 𝐁భమ 𝑑𝑑𝑡 𝐲(𝑡) = −𝐋𝐁షభమ𝐲(𝑡). (14) 

Multiplying the above equation with 𝐁షభమ from the 
left gives 𝑑𝑑𝑡 𝐲(𝑡) = −𝐁షభమ𝐋𝐁షభమ𝐲(𝑡). (15) 

Let 𝐋௦ define as follows: 𝐋௦ ≔ 𝐁షభమ𝐋𝐁షభమ

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝑎ଵ𝑏ଵ
ୀଵ − 𝑎ଵଶඥ𝑏ଵ𝑏ଶ ⋯ − 𝑎ଵඥ𝑏ଵ𝑏− 𝑎ଵଶඥ𝑏ଵ𝑏ଶ 𝑎ଶ𝑏ଶ

ୀଵ ⋯ − 𝑎ଶඥ𝑏ଶ𝑏⋮ ⋮ ⋱ ⋮− 𝑎ଵඥ𝑏ଵ𝑏 − 𝑎ଶඥ𝑏ଶ𝑏 ⋯ 𝑎𝑏
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

. (16) 

While 𝐋 is asymmetric, where 𝐋 = 𝐋𝐁ିଵ, 𝐋௦ is a 
real symmetric matrix, because 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ =ቂ𝐁షభమቃ் 𝐋𝐁షభమ, where 𝐁 is the transpose of 𝐁. Re-

placing 𝐁షభమ𝐋𝐁షభమ in Eq. (15) with 𝐋௦ gives 𝑑𝑑𝑡 𝐲(𝑡) = −𝐋௦ 𝐲(𝑡). (17) 

A real symmetric matrix can be diagonalized (e.g. 
Strang, 1976). Therefore, the above linear ordinary 
differential equation is solved as 𝐲(𝑡) = 𝑒ି𝐋ೞ௧𝐲(0) (18) 
where 𝐲(0) is the initial of 𝐲(𝑡), and, furthermore, 
the above can be decomposed as 
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𝐲(𝑡) = 𝑒ି𝐋ೞ௧𝐲(0)= �̃�ଵ𝑒ିఒభ௧𝐯ଵ + �̃�ଶ𝑒ିఒమ௧𝐯ଶ + ⋯+ �̃�𝑒ିఒ௧𝐯 (19) 

where �̃� is the multiplier associated with 𝐲(0), and 𝜆  and 𝐯  are the eigenvalue and eigenvector of 𝐋௦ , 
respectively (e.g. Strang, 1976). From Sylvester’s 
law of inertia (e.g. Strang, 1976), the eigenvalues of 𝐋௦ , which is a congruent matrix of 𝐋 because 𝐋௦ = ቂ𝐁షభమቃ் 𝐋𝐁షభమ, are satisfied with 0 = 𝜆ଵ ≤ 𝜆ଶ ≤ ⋯ ≤ 𝜆 , (20) 
as with the Laplacian matrix 𝐋. Thus, all eigenvalues 
of 𝐋௦ are non-negative, and 𝐋௦ is semi-definite (e.g. 
Strang, 1976). Therefore, 𝐲(𝑡) = �̃�ଵ𝐯ଵ + �̃�ଶ𝑒ିఒమ௧𝐯ଶ + ⋯+ �̃�𝑒ିఒ௧𝐯. (21) 
Multiplying the above equation with 𝐁భమ from the left 
yields 𝐱(𝑡) = 𝐁భమ𝐲(𝑡) =�̃�ଵ𝐁భమ𝐯ଵ + �̃�ଶ𝑒ିఒమ௧𝐁భమ𝐯ଶ + �̃�ଷ𝑒ିఒయ௧𝐁భమ𝐯ଷ+⋯+ �̃�𝑒ିఒ௧𝐁భమ𝐯, (22) 

because 𝐱(𝑡) = 𝐁భమ𝐲(𝑡)  of Eq. (12) . Concludingly, 
the “speed” of convergence of the system is pre-
scribed by the second minimum eigenvalue 𝜆ଶ. Eq. (22) indicates that the eigenvalues of 𝐋𝐁షభ  and 𝐋௦ 
are all equal, and 𝐮 = 𝐁భమ𝐯, where 𝐮 is a (non-nor-
malized) eigenvector of 𝐋𝐁షభ for 𝜆. These are also 
confirmed by 𝐋௦𝐯 = 𝜆𝐯,. Multiplying 𝐋௦𝐯 = 𝜆𝐯 
with 𝐁భమ from left yields 𝐁భమ𝐋௦𝐯 = 𝜆𝐁భమ𝐯, and then, 𝐁భమ𝐋௦𝐯 = 𝜆𝐮  because 𝐮 = 𝐁భమ𝐯 . On the other 
hand, 𝐁భమ𝐋௦𝐯 = 𝐁భమ𝐁షభమ𝐋𝐁షభమ𝐯 = 𝐋𝐁షభమ𝐯 =𝐋𝐁షభ𝐁భమ𝐯 = 𝐋𝐁షభ𝐮  due to 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ . There-
fore, 𝐋𝐁షభ𝐮 = 𝜆𝐮. Let 𝐮 = 𝐮 ‖𝐮‖⁄ , that is, 𝐮 is 
the normalized eigenvector of 𝐋𝐁షభ. 
Concludingly, 𝜆  and 𝐮  are the eigenvalue and ei-
genvector of 𝐋𝐁షభ.  𝐱(𝑡) = 𝑐ଵ𝐮ଵ + 𝑐ଶ𝑒ିఒమ௧𝐮ଶ + ⋯+ 𝑐𝑒ିఒ௧𝐮, (23) 
where 𝑐 = �̃�‖𝐮‖.  

Eq. (𝑎5) in Appendix shows that a non-normal-
ized eigenvector of 𝐋௦ for the minimum eigenvalue, 
that is 𝜆ଵ = 0, is 

𝐛భమ = √𝐛 = ⎣⎢⎢
⎢⎡ඥ𝑏ଵඥ𝑏ଶ⋮ඥ𝑏⎦⎥⎥

⎥⎤ . (24) 

In this study, the eigenvector is normalized, and the 
(normalized) eigenvector with 𝜆ଵ = 0 is 

𝐯ଵ = 𝐛భమቛ𝐛భమቛ = 1ඥ∑ 𝑏ୀଵ ⎣⎢⎢
⎢⎡ඥ𝑏ଵඥ𝑏ଶ⋮ඥ𝑏⎦⎥⎥

⎥⎤ , (25) 

where ‖∙‖  denotes Euclidean distance. Therefore, 
when 𝜆ଶ > 0, 

lim௧→ஶ 𝐱(𝑡) = �̃�ଵ𝐁భమ𝒗ଵ = �̃�ଵඥ∑ 𝑏ୀଵ ൦𝑏ଵ𝑏ଶ⋮𝑏൪ = 𝑐ଵ𝐛, (26) 

where 𝑐ଵ=�̃�ଵඥ∑ 𝑏ୀଵ . Because ∑ 𝑥(𝑡)ୀଵ = 𝑄 have 
to be always satisfied, 𝑐ଵ = 𝑄 ∑ 𝑏ୀଵ⁄ . It is known 
that the second minimum eigenvalue of the Laplacian 
matrix is positive for connected networks. Note that 
any node pair is connected by links in a connected 
network. From Sylvester’s law of inertia (e.g. Strang, 
1976), the second minimum eigenvalue of 𝐋௦  for 
connected networks is positive, as with 𝐋. Conclud-
ingly, for connected networks, 

lim௧→ஶ 𝐱(𝑡) = 𝑄∑ 𝑏ୀଵ ൦𝑏ଵ𝑏ଶ⋮𝑏൪ = 𝑐ଵ𝐛. (27) 

As stated above, the convergence speed of the equal 
distribution problem is principally characterized by 
the second minimum eigenvalue, 𝜆ଶ. Its eigenvector, 𝐮ଶ, is also useful to investigate the network’s connec-
tivity. The transfer movement of supplies is decom-
posed as the equation (17), and the slowest move-
ment is expressed as 𝑐ଶ𝑒ିఒమ௧𝐮ଶ , which principally 
prescribes the convergence speed. The second mini-
mum eigenvector, 𝐮ଶ, can partition the nodes in the 
network. As the value of component of 𝐮ଶ is closer, 
the dynamics are more similar in the sense of the 
slowest movement of supplies. 

There are finite positive constants, 𝑐, 𝛾, and 𝜆. If  ‖𝐱(𝑡) − 𝑐𝐛‖ ≤ 𝛾𝑒ିఒ௧      ∀𝑡 ≥ 0,∀𝐱(0) ∈ Ω, (28) 𝐱(𝑡) converges exponentially, where 

Ω = ൞ 𝑥(𝑡)
ୀଵ = 𝑄 > 0                 𝑥(𝑡) ≥ 0   (𝑖 = 1,2,⋯ ,𝑛). (29) 

For any time (∀𝑡 ≥ 0), ‖𝐱(𝑡) − 𝑐𝐛‖ ≥ 0 is less than 𝛾𝑒ିఒ௧, that is, the supplies, 𝐱(𝑡), converge exponen-
tially with exponent 𝜆. As exponent 𝜆 increases, the 
system converges faster. Thus, exponent 𝜆 stands for 
an exponential convergence speed. For connected 
neworks, 𝜆ଶ > 0, and the exponential convergence 
speed exponent is 𝜆ଶ, according to Eq. (22). The ex-
ponential convergence speed does not depend on the 
initial state, and is widely available. 

The second minimum eigenvector as well as the 
eigenvalue is also useful. It can be seen from Eq. (22) that the second minimum eigenvalue and eigen-
vector dominates over the third or subsequent eigen-
values and eigenvectors as an enough time passes. 
The dynamics of supplies at the nodes asymptotically 
approximate to 𝐱(𝑡) ≅ 𝑐ଵ𝐛 + 𝑐ଶ𝑒ିఒమ௧𝐮ଶ. (30) 
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The first term in the right hand of the above equation 
is constant, and the dynamics of supplies at nodes are 
prescribed by the second minimum eigenvalue and 
eigenvector.  𝐫(𝑡) = 𝐁ିଵ𝐱(𝑡) ≅ 𝑐ଵ𝟏 + 𝑐ଶ𝑒ିఒమ௧𝐁ିଵ𝐮ଶ. (31) 
The dynamics of fulfillment rate of supplies at a node 
is closer to that of supplies at the node with a similar 
second minimum eigenvector component. The fulfill-
ment rate of supplies at node 𝑖 is expressed as 𝑟(𝑡) =𝑥(𝑡) 𝑏⁄ ≅ 𝑐ଵ + 𝑐ଶ ௨మ 𝑒ିఒమ௧ , where 𝑢ଶ  is compo-
nent 𝑖  of 𝐮ଶ , that is, 𝑖-th component of the second 
minimum eigenvector component. Hence, if ௨మ  is 

close to ௨మೕೕ , the dynamics of fulfillment rates at nodes 𝑖 and 𝑗 are similar. As the nodes are connected more 
strongly, their dynamics should be closer. Thus, con-
nectivity between a pair of nodes can be given by 𝜐 = ብ 𝑢ଶ𝑏 − 𝑢ଶ𝑏  ብ , (32) 

where 𝜐 is the connectivity from the standpoint of 
the dynamics of fulfillment rates at nodes. Thus, the 
component of the second minimum eigenvector pro-
vides the information on the connectivity between the 
nodes. For network connectivity analysis, the follow-
ing is defined: 𝜐 = 𝑢ଶ𝑏 . (33) 

 
(3) Simple Example  

Fig. 1 shows a 4-node U-shape network, where 3 
links connect the 4 nodes. The link strengths are all 1, 
that is, 𝑎ଵଶ = 𝑎ଶଷ = 𝑎ଷସ = 1. The Laplacian matrix 
of the 4-node U-shape network is 

𝐋 = ൦ 1 −1 0 0−1 2 −1 00 −1 2 −10 0 −1 1 ൪ . (34) 

In case that the required amounts of supplies are all 
1, that is, 𝑏ଵ = 𝑏ଶ = 𝑏ଷ = 𝑏ସ = 1, the second mini-
mum eigenvalue of the Laplacian matrix of the 4-
node U-shape network, which is expressed in Eq. (34), is 2 − √2. Fig. 2 presents a 4-node square net-
work, in which 4 links connect 4 nodes, with 𝑎ଵଶ =𝑎ଶଷ = 𝑎ଷସ = 𝑎ଵସ = 1 . The connectivity of the 4-
node square network shown in Fig. 2 is stronger than 
that of the 4-node U-shape network in Fig. 1. The sec-
ond minimum eigenvalue of the Laplacian matrix of 
the 4-node square network is 2, while that of the U-
shape network is 2 − √2 as described above. These 
example networks exemplify that the second mini-
mum eigenvalues of strongly connected network is 
larger than that of weakly connected network. 
 

                         
Fig. 1 4-node U-shape network      Fig. 2 4-node square network 
 

Fig. 3 shows the dynamics of the amounts of sup-
plies at the nodes in the 4-node U-shape network with 𝑥ଵ(0) = 1.2, 𝑥ଶ(0) = 0.8, 𝑥ଷ(0) = 0.4 and 𝑥ସ(0) =0. The figure illustrates that the equal distribution 
reaches as enough time passes. 
 

 
Fig. 3  The dynamics of supplies in the 4-node U-shape network  
 

The dynamics of the amounts of supplies at the 
nodes in the 4-node square network with 𝑥ଵ(0) =1.2, 𝑥ଶ(0) = 0.8, 𝑥ଷ(0) = 0.4 and 𝑥ସ(0) = 0 are de-
picted in Fig. 4. The speed to converge to the equal 
distribution in the square network is much faster than 
the U-shape network. Thus, we can confirm from the 
dynamics as well as the second minimum eigenvalue 
that the supplies are equally distributed faster in the 
strongly connected square network than in the U-
shape network. 
 

 
Fig. 4  The dynamics of supplies in the 4-node square network 
 

Next, the case with different required amounts of 
supplies at the nodes are examined. In the 4-node U-
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3

1
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shape network, the required amount of supplies for 2 
nodes in the middle in the network is 𝑏 while that for 
the both end 2 nodes is 1, that is, 

𝐛 = ൦ 1 𝑏𝑏1 ൪    and   𝐁 = ൦1 0 0 00 𝑏 0 00 0 𝑏 00 0 0 1൪ . (35) 

The characteristic polynomial of 𝐋𝐁షభ to yield the 
eigenvalues of the 4-node U-shape network is ex-
pressed as |𝜆𝐈 − 𝐋𝐁షభ|= 𝜆 𝜆 − ൬1 + 1𝑏൰൨ 𝜆ଶ − ൬1 + 3𝑏൰ 𝜆 + 2𝑏൨ (36) 

Therefore, the eigenvalues of 𝐋𝐁షభ for the 4-node U-
shape network are 

⎩⎪⎪
⎨⎪
⎪⎧ 𝜆ଵ = 0                                         𝜆ଶ = 𝑏 + 3 − √𝑏ଶ − 2𝑏 + 92𝑏   𝜆ଷ = 𝑏 + 1𝑏                                 𝜆ସ = 𝑏 + 3 + √𝑏ଶ − 2𝑏 + 92𝑏

(37) 

Let 𝜆ଶ(𝑏)  denote (𝑏 + 3 − √𝑏ଶ − 2𝑏 + 9) 2𝑏⁄ . 
Fig. 5 indicates 𝜆ଶ(𝑏), that is, the second minimum 
eigenvalue of Laplacian matrix of the 4-node U-
shape network with varying 𝑏 . The 𝜆ଶ-intercept in 
Fig. 5 is given as follows: lim→ 𝜆ଶ(𝑏) = 23 . (38) 

 
The derivative of 𝜆ଶ(𝑏) with respect to 𝑏 is  𝑑𝜆ଶ𝑑𝑏 = −𝑏 + 9 − 3ඥ(𝑏 − 1)ଶ + 82𝑏ଶඥ(𝑏 − 1)ଶ + 8 ൏ 0. (39) 

Clearly, the denominator of the second term is posi-
tive. The numerator is −𝑏 + 9 − 3ඥ(𝑏 − 1)ଶ + 8 ൏0  (∀𝑏 > 0) , because (−𝑏 + 9)ଶ −൫3√𝑏ଶ − 2𝑏 + 9൯ଶ = −8𝑏ଶ ≤ 0. Therefore, the sec-
ond minimum eigenvalue of Laplacian matrix of the 
4-node U-shape network decreases as 𝑏 increases.  
 

 

Fig. 5  The second minimum eigenvalue of the 4-node U-shape 
network with varying b 
 

Fig. 6 shows the dynamics of supplies in the 4-
node U-shape network with 𝑏 = భమ. The amounts of 
supplies at nodes 2 and 3 converge to a half of those 
at nodes 1 and 4 because 𝑏 = భమ. Fig. 7 presents the 
dynamics of supplies in the U-shape network with 𝑏 = భమబ.  

It would seem that the 4-node U-shape network ap-
proaches the 2-node network which is shown in Fig. 
8 as 𝑏 goes to 0. The characteristic polynomial of the 
2-node network with 𝑎ଵଶ = 1/3 in Fig. 8 is given by 
 

 
Fig. 6  The dynamics of supplies in the U-shape network with 𝑏 = భమ 
 

 
Fig. 7  b = 1/20 the dynamics of supplies in the U-shape network 
with 𝑏 = భమబ 
 

   
Fig. 8  2-node U-shape network 

 

1 2
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ተ𝜆 ቂ1 00 1ቃ − ൦ 13 − 13−13 13 ൪ተ = 𝜆 ൬𝜆 − 23൰ . (40) 

Therefore, the eigenvalues are 0 and 2/3. Thus, the 
second minimum eigenvalue of Laplacian matrix of 
the 2-node network with 𝑎ଵଶ = 1/3 is 2/3. This is 
equal to 𝜆ଶ(0) = lim→ 𝜆ଶ(𝑏) = 2/3 . As 𝑏 → 0 , 
the 4-node U-shape network with 𝑎ଵଶ = 𝑎ଶଷ =𝑎ଷସ = 1 (the link strengths are all 1) corresponds to 
the 2-node U-shape network with 𝑎ଵଶ = 1/3. Fig. 9 
shows the dynamics of supplies of the 2-node net-
work with 𝑎ଵଶ = 1/3. Fundamental structure of the 
dynamics in Fig. 9 is similar to that in Fig. 7. Intui-
tively, we can understand that the 2-node network in 
Fig. 8 is a limit of the 4-node U-shape network, and 
their convergence speeds seems almost same. 
 

 
Fig. 9  The dynamics of supplies of the 2-node network with 𝑎ଵଶ = 1/3 
 

To exemplify the connectivity between nodes us-
ing the second minimum eigenvector, a 14-node ex-
ample network shown in Fig. 10 is introduced. In the 
14-node example network, all link strengths are 1. 
Fig 11 plots the second minimum eigenvector com-
ponents divided by the required amount of supplies 
at the nodes, 𝜐 = 𝑢ଶ 𝑏⁄  ( 𝑖 = 1,  2,⋯ ,14 ). As a 
whole, the 14 plots in Fig. 11 are roiughly classified 
into 3 clusters: cluster 1 (node 1, 2, 3, 4, 5, and 6), 
cluster 2 (node 7, 8, 9, and 10) and cluster 3 (node 11, 
12, 13, and 14). These are consistent with the network 
structure in Fig. 10. Within the cluster, the nodes are 
mutually connected strongly. 
 

 
Fig. 10  An example of 14-node network whose link strengths are 
all 1 
 

In cluster 3, 𝜐ଵଶ is equal to 𝜐ଵଷ. This means that their 
(asymptotical) supply dynamics are almost same, and 
the connectivity between nodes 12 and 13 is much 
stronger within the cluster. Therefore, nodes 12 and 
13 can be lumped into a double-size node. Similarly, 
the pair of nodes 8 and 9 in cluster 2, that of nodes 1 
and 2 and group of nodes 3, 4, and 5 in cluster 1 are 
blocked into two double-size nodes and a triple-size 
node, respectively. 

 
Fig. 11  The values of components of the second minimum ei-
genvector of the 14-node network 
 

Then, an integrated network shown in Fig 12 is 
made. In the integrated 9-node network, 𝑏ଶ = 3 , 𝑏ଵ = 𝑏ହ = 𝑏଼ = 2 , and 𝑏ଷ = 𝑏ସ = 𝑏 = 𝑏 = 𝑏ଽ =1. In Fig. 10, node 1 is connected with nodes 3 and 4 
by two link one by one and node 2 is tied with nodes 
3 and 5 by two links one by one. Therefore, a pair of 
nodes 1 and 2 connect a group of nodes 3, 4, and 5 by 
4 links, and 𝑎ଵଶ = 4 in the integrated 9-node network 
of Fig. 12, which means that node 1 is tied to node 2 
with 4 links in the integrated 9-node network. Simi-
larly, 𝑎ଶଷ = 3,𝑎ସହ = 2,𝑎ହ = 2,𝑎଼ = 2 , and 𝑎଼ଽ = 2.  
 

 
Fig. 12  An integrated 9-node network for the 14-node network 
 

The eigenvalues of the Laplacian matrix of the in-
tegrated 9-node network in Fig. 12 are illustrated in 
Fig. 13. Those of the 14-node network are also shown 
in Fig. 13. The second minimum eigenvalues of the 
two networks are almost same. The values of 𝜐 (𝑖 =1,  2,⋯ ,9) are presented in Fig. 14. Simple compari-
son of 𝛖 in the 14-node and integrated 9-node net-
works cannot be made as the number of nodes is dif-
ferent. For comparison, 𝛖ଽ→ଵସ =(𝜐ଵ, 𝜐ଵ, 𝜐ଶ, 𝜐ଶ, 𝜐ଶ, 𝜐ଷ, 𝜐ସ, 𝜐ହ, 𝜐ହ, 𝜐, 𝜐, 𝜐଼, 𝜐଼, 𝜐ଽ)  is 
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introduced, where 𝜐ଵ, 𝜐ଶ, 𝜐ଷ,⋯ , 𝜐ଽ are the values of 
the integrated 9-node network. As Table 1 indicates, 
the vector of 𝛖ଽ→ଵସ ‖𝛖ଽ→ଵସ‖⁄  is almost identical to 𝛖 
in the 14-node network. Thus, the 14-node network 
is adequately coarsened to the integrated 9-node net-
work. 
 

 
Fig. 13  Eigenvalues of 14-node and its integrated 9-node net-
works 

 

 
Fig. 14  The values of components of the second minimum ei-
genvector of the integrated 9-node network 
 
 
3. REINFORCEMENT OPTIMIZATION 

PROBLEM FOR NETWORK 
CONNECTIVITY 

 
From the standpoint of equal distribution problem, 

the network connectivity is formulated in the previ-
ous section. It is natural to consider how to reinforce 

the network for the fastest equal distribution under 
the constraints. We shall call this a reinforcement op-
timization problem. 
 
(1) Formulation of reinforcement optimization 
problem 

The reinforcement optimization problem in this pa-
per is to determine which link is reinforced under the 
budget. The reinforcement of link (𝑖, 𝑗) is to add 𝑤 
to component (𝑖, 𝑗)  of the adjacent matrix 𝐀 . The 
component of the reinforced adjacent matrix, 𝐀 =𝐀 + 𝐖, is given by 𝑎ො = 𝑎 + 𝑤 , (41) 
where 𝑤 is the reinforcement amount of link (𝑖, 𝑗) 
and 𝐖 is the reinforcement matrix, whose compo-
nent is 𝑤 . Let 𝐋መ  denote the reinforced Laplacian 
matrix, that is, the Laplacian matrix of the reinforced 
adjacent matrix 𝐀. In case we emphacize that  𝐋መ  is a 
matrix-valued function of 𝐖, we also use 𝐋መ (𝐖) in 
this paper. A simple budget constraint is as follows: 

൞  0 ≤ 𝑤 ≤ 𝜌               ∀(𝑖, 𝑗) 𝑤
ୀଵ


ୀଵ ≤ 𝛽                        (42) 

where 𝛽 is the total budget and 𝜌 is the upper limit 
for component (𝑖, 𝑗) of the reinforced adjacent matrix 𝐀. This constraint is linear, and is convex with re-
spect to {𝑤 }= 𝐖 . Let 𝕎  denote the set of the 
above budget constraint, and the feasible constraint is 
expressed as 𝐖 ∈ 𝕎.  

As stated in the previous section, the exponential 
convergence speed of the equal distribution problem 
is principally characterized by the second minimum 
eigenvalue, 𝜆ଶ . Therefore, maximizing the second 
minimum eigenvalue of 𝐋መ 𝐁ିଵ with 𝐖 ∈ 𝕎 yields a 
reinforcement optimization solution. Concludingly, 
the reinforcement optimization problem for equal 
distribution problem is formulated as follows: max.𝐖  𝜆ଶ൫𝐋መ ሾ𝐖ሿ 𝐁ିଵ൯      𝑠. 𝑡.  𝐖 ∈ 𝕎 (43) 
where 𝜆ଶ൫𝐋መ 𝐁ିଵ൯ is the second minimum eigenvalue 
of the reinforced Laplacian matrix 𝐋መ 𝐁ିଵ. The eigen-
values of 𝐁షభమ𝐋𝐁షభమ are equal to those of 𝐋𝐁ିଵ, as Eqs. (21), (22), and (23) indicate. Therefore, the maxi-
mization problem of Eq. (43) is re-written as max.𝐖  𝜆ଶ ቀ𝐁షభమ 𝐋መ ሾ𝐖ሿ 𝐁షభమቁ      𝑠. 𝑡.  𝐖 ∈ 𝕎. (44) 
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Table 1 The values of the second minimum eigenvectors of 14-node and integrated 9-node networks 

node # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 𝛖వ→భర‖𝛖వ→భర‖   
-0.300 

 
-0.300 

 
-0.280 

 
-0.280 

 
-0.280 

 
-0.217 

 
0.001 

 
0.058 

 
0.058 

 
0.107 

 
0.296 

 
0.371 

 
0.371 

 
0.397 

14-node 
network 

 
-0.300 

 
-0.300 

 
-0.282 

 
-0.279 

 
-0.279 

 
-0.217 

 
0.002 

 
0.058 

 
0.058 

 
0.107 

 
0.296 

 
0.370 

 
0.370 

 
0.397 
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(2) Local improvement of the network connectiv-
ity  

Before examining the globally optimizing the rein-
forcement problem, local improvement of the net-
work connectivity local is investigated in this sub-
section. The reinforce net amount 𝑤 is sufficiently 
small. In this case, it is written as ∆𝑤 , and 0 ≤∆𝑤 ≪ 1  ∀(𝑖, 𝑗) and ∆𝐖 = ൛∆𝑤ൟ. The reinforced 
adjacency matrix is 𝐀 + ∆𝐖 and the Laplacian ma-
trix is 𝐋መ ሾ∆𝐖ሿ = 𝐋 + ∆𝐋[∆𝐖] . In the remainder of 
this sub-section, ∆𝐋[∆𝐖] is denoted simply by ∆𝐋.  

Let 𝜆መଶ and 𝐯ොଶ denote the second minimum eigen-
value and eigenvector of 𝐁షభమ(𝐋 + ∆𝐋)𝐁షభమ , respec-
tively. As stated above, 𝐁షభమ𝐋𝐁షభమ𝐯ଶ = 𝜆ଶ𝐯ଶ , and 𝐋መ 𝐁షభ𝐯ොଶ = 𝐁షభమ(𝐋 + ∆𝐋)𝐁షభమ𝐯ොଶ = 𝜆መଶ𝐯ොଶ . The differ-
ence between 𝜆ଶ  and 𝜆መଶ  must be infinitesimal, and 𝜆መଶ = 𝜆ଶ + ∆𝜆ଶ. Similarly, 𝐯ොଶ = 𝐯ଶ + ∆𝐯ଶ. Therefore, 𝐁షభమ(𝐋 + ∆𝐋)𝐁షభమ(𝐯ଶ + ∆𝐯ଶ) = (𝜆ଶ + ∆𝜆ଶ)(𝐯ଶ +∆𝐯ଶ). Ignoring the second-order infinitesimal terms 
yields 𝐁షభమ𝐋𝐁షభమ𝐯 + 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ + 𝐁షభమ𝐋𝐁షభమ∆𝐯ଶ≅ 𝜆ଶ𝐯ଶ + ∆𝜆ଶ𝐯ଶ + 𝜆ଶ∆𝐯ଶ. (45) 

Plugging 𝐁షభమ𝐋𝐁షభమ𝐯ଶ = 𝜆ଶ𝐯ଶ into the above equation 
gives 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ + 𝐁షభమ𝐋𝐁షభమ∆𝐯ଶ = ∆𝜆ଶ𝐯ଶ + 𝜆ଶ∆𝐯ଶ. (46) 
Multiplying the above equation by 𝐯ଶ்  from the left 
produces 𝐯ଶ் 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ + 𝐯ଶ் 𝐁షభమ𝐋𝐁షభమ∆𝐯ଶ= ∆𝜆ଶ𝐯ଶ் 𝐯ଶ + 𝜆ଶ𝐯ଶ் ∆𝐯ଶ, (47) 

because ‖𝐯ଶ‖ = 𝐯ଶ் 𝐯ଶ = 1 . Using the ቀ𝐁షభమ𝐋𝐁షభమ𝐯ଶቁ் = (𝜆ଶ𝐯ଶ)், we obtain ∆𝜆ଶ =𝐯ଶ் 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ + ቀ𝐯ଶ் 𝐁షభమ𝐋𝐁షభమ − 𝜆ଶ𝐯ଶ் ቁ ∆𝐯ଶ= 𝐯ଶ் 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ. (48) 

From 𝐮 = 𝐁భమ𝐯,  ∆𝜆ଶ = 𝐮ଶ்𝐁షభ∆𝐋𝐁షభ𝐮ଶ, (49) 
where 𝐮ଶ is the non-normalized second minimum ei-
genvector of 𝐋𝐁షభ while 𝐯ଶ is the normalized second 
minimum eigenvector of 𝐁షభమ𝐋𝐁షభమ, as stated above. 

In the case that link (𝑖, 𝑗) is only reinforced, and 𝑤  is only added to component (𝑖, 𝑗) of 𝐀 , that is, 𝑎ො = 𝑎 + 𝑤, while the other components are not 
reinforced. In this case, 𝑤, −𝑤, −𝑤, and 𝑤 are 
added to components (𝑖, 𝑖), (𝑖, 𝑗), (𝑗, 𝑖),and (𝑗, 𝑗) in 
the Laplacian matrix, respectively, and the other 
components are unchanged. The difference in the La-
placian matrix before and after the reinforcement, ∆𝐋, 
is as follows: 

∆𝐋 = ⎣⎢⎢
⎢⎡ 𝑤 −𝑤−𝑤 𝑤 ⎦⎥⎥

⎥⎤ (50) 

where blanks denote 0 in the above matrix. Substitut-
ing the above ∆𝐋 into Eq. (48) yields 𝐯ଶ் 𝐁షభమ∆𝐋𝐁షభమ𝐯ଶ

= 𝐯ଶ் 𝐁షభమ
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝟎𝑤 ቆ𝑣ଶඥ𝑏 − 𝑣ଶඥ𝑏ቇ𝟎−𝑤 ቆ𝑣ଶඥ𝑏 − 𝑣ଶඥ𝑏ቇ𝟎 ⎦⎥⎥

⎥⎥⎥
⎥⎤

= 𝑤 ቆ𝑣ଶඥ𝑏 − 𝑣ଶඥ𝑏ቇଶ , (51)
 

where 𝟎 is zero vector. From 𝐮 = 𝐁భమ𝐯, we also ob-
tain ∆𝜆ଶ = ∆𝑤 ቆ𝑣ଶඥ𝑏 − 𝑣ଶඥ𝑏ቇଶ= ∆𝑤 ቆ𝑢ଶ𝑏 − 𝑢ଶ𝑏 ቇଶ . (52) 

Because 𝐮 = 𝐮 ‖𝐮‖⁄ = 𝐁భమ𝐯 and 𝐮 = 𝐁భమ𝐯, 𝜕𝜆ଶ𝜕𝑤 = 𝑘 ቆ𝑢ଶ𝑏 − 𝑢ଶ𝑏 ቇଶ . (53) 

where 𝑘 = ቛ𝐁భమ𝐯ଶቛଶ = 𝐛்𝐯ଶ. 
 
(3) Convexity of the problem 

The function 𝜆ଶ ቀ𝐁షభమ 𝐋መ  𝐁షభమቁ looks hard to manip-
ulate, but it is concave as shown below. The con-
straint is also convex as stated above. Therefore, the 
reinforcement optimization problem of Eq. (44) is a 
concave optimization problem. 

Substituting 𝐁షభమ𝐋መ 𝐁షభమ  into Eq. (𝑎8)  in Appendix 
gives 𝐱்𝐁షభమ𝐋መ 𝐁షభమ𝐱 = 12𝑎ො ቆ 𝑥ඥ𝑏 − 𝑥ඥ𝑏ቇଶ

ୀଵ

ୀଵ= 12൫𝑎 + 𝑤൯ ቆ 𝑥ඥ𝑏 − 𝑥ඥ𝑏ቇଶ

ୀଵ

ୀଵ (54) 

Let 𝐖 = 𝛾𝐖⦁ + (1 − 𝛾)𝐖∘ , where 𝐖⦁,𝐖∘ ∈𝕎 are different and 0 ≤ 𝛾 ≤ 1.  
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𝐱்𝐁షభమ𝐋መ [𝐖]𝐁షభమ𝐱                                     = 𝛾2൫𝑎 + 𝑤⦁ ൯ ቆ 𝑥ඥ𝑏 − 𝑥ඥ𝑏ቇଶ
ୀଵ


ୀଵ= 𝛾𝐱்𝐁షభమ𝐋መ [𝐖⦁]𝐁షభమ𝐱 + (1 − 𝛾)𝐱்𝐁షభమ𝐋መ [𝐖∘]𝐁షభమ𝐱  

(55) 
where 𝐋መ [𝐖]  is the reinforced Laplacian matrix 
with 𝛾𝐖⦁ + (1 − 𝛾)𝐖∘  and 𝑤⦁ ,𝑤∘  are compo-
nents of 𝐖⦁,𝐖∘ , respectively. From Eq. (𝑎10)  in 
Appendix,  𝜆ଶ ቀ𝐁షభమ𝐋መ 𝐁షభమቁ = min.𝐱∈𝕏మ 𝐱்𝐁షభమ𝐋መ 𝐁షభమ𝐱 (56) 
where 𝐋መ  = 𝐋መ [𝐖]  and 𝕏ଶ =൛∀𝐱 | 𝐱√𝐛,  ‖𝐱‖ = 1ൟ . Substituting Eq. (55)  into 
the above equation yields 𝜆ଶ ቀ𝐁షభమ𝐋መ 𝐁షభమቁ= min.𝐱∈𝕏మ ቂ𝛾𝐱்𝐁షభమ𝐋መ ⦁𝐁షభమ𝐱 + (1 − 𝛾)𝐱்𝐁షభమ𝐋መ ∘𝐁షభమ𝐱ቃ. (57) 

Obviously, 𝐱்𝐁షభమ𝐋መ ⦁𝐁షభమ𝐱 ≥ min.𝐱∈𝕏మ 𝐱்𝐁షభమ𝐋መ ⦁𝐁షభమ𝐱 =𝜆ଶ ቀ𝐁షభమ𝐋መ ⦁𝐁షభమቁ  and 𝐱்𝐁షభమ𝐋መ ∘𝐁షభమ𝐱 ≥ 𝜆ଶ ቀ𝐁షభమ𝐋መ ∘𝐁షభమቁ .  
Therefore,         𝜆ଶ ቀ𝐁షభమ𝐋መ 𝐁షభమቁ ≥min.𝐱∈𝕏మ ቂ𝛾𝜆ଶ ቀ𝐁షభమ𝐋መ ⦁𝐁షభమቁ + (1 − 𝛾)𝜆ଶ ቀ𝐁షభమ𝐋መ ∘𝐁షభమቁቃ . (58)        (58) 
Because 𝜆ଶ ቀ𝐁షభమ𝐋መ ⦁𝐁షభమቁ  and 𝜆ଶ ቀ𝐁షభమ𝐋መ ∘𝐁షభమቁ  do not 
includes 𝐱, we obtain 𝜆ଶ ቀ𝐁షభమ𝐋መ 𝐁షభమቁ ≥𝛾𝜆ଶ ቀ𝐁షభమ𝐋መ ⦁𝐁షభమቁ + (1 − 𝛾)𝜆ଶ ቀ𝐁షభమ𝐋መ ∘𝐁షభమቁ . (59) 

This indicates that the second minimum eigenvalue 
of the reinforced Laplacian matrix, 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ, is concave with respect to the re-
inforcement matrix 𝐖. Concludingly,  min.𝐖  −𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ      𝑠. 𝑡.  𝐖 ∈ 𝕎 (60) 
is a convex optimization problem (convex program-
ming). Therefore, an ordinary convex optimization 
algorithm can be applied to Eqs. (44) and (60) and the 
problem is solved efficiently. Many reinforcement 
problems are formulated as combinatorial optimiza-
tion or integer programming problem, but the above 
reinforcement optimization problem is a convex op-
timization problem, which is easy to manipulate. 
 
(4) Semi-definite programming for the reinforce-
ment optimization problem 

In the previous sub-section, we confirm that the 
objective function of the reinforcement optimization 
problem is concave and its constraint is linear.  

 
The reinforcement optimization problem can also 

be formulated as max.𝐖,క  𝜉                                             𝑠. 𝑡.  ቊ 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉 𝐖 ∈ 𝕎                             . (61) 

Let 𝐱 = 𝐳 + 𝜃√𝐛, where 𝐳 √𝐛 and 𝜃 is a scalar, 
that is, 𝐱 is decomposed as a vector that is parallel 
with √𝐛 and an orthogonal vector to √𝐛 without loss 
of generality. An adjustment constant matrix is intro-
duced. The matrix is 𝜉 ቂ𝐈 − √𝐛√𝐛் ∑ 𝑏ୀଵൗ ቃ, and its 
quadratic form is 𝜉𝐱் 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩ 𝐱

= 𝜉 ൭𝐱்𝐱 − 𝐱்√𝐛√𝐛்𝐱∑ 𝑏ୀଵ ൱= 𝜉𝐳்𝐳, (62)
 

because  𝐱்𝐱 = ൫𝐳 + 𝜃√𝐛൯்൫𝐳 + 𝜃√𝐛൯= 𝐳்𝐳 + 𝜃ଶ√𝐛்√𝐛 = 𝐳்𝐳 + 𝜃ଶ𝑏
ୀଵ (63) 

and 𝐱்√𝐛√𝐛்𝐱= ൫𝐳 + 𝜃√𝐛൯்√𝐛√𝐛்൫𝐳 + 𝜃√𝐛൯= 𝜃ଶ√𝐛்√𝐛√𝐛்√𝐛 = 𝜃ଶ ൭𝑏
ୀଵ ൱ଶ , (64) 

due to 𝐳்√𝐛 = √𝐛்𝒛 = 0. Therefore, the quadratic 
form of 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ deduced by the adjustment 
matrix is as follows: 𝐱் ൭𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩൱ 𝐱= 𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 − 𝜉𝐳்𝐳 (65) 

In the case of 𝐱 ∈ 𝕏ଶ  (𝐱√𝐛,  ‖𝐱‖ = 1 ), 𝐱 = 𝐳 +𝜃√𝐛 , 𝜃 = 0  and ‖𝐱‖ = ‖𝐳‖ = 𝐳்𝐳 = 1 . If 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉 , min.𝐱∈𝕏మ 𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 ≥𝜉. Therefore, 𝐱் ൭𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩൱ 𝐱 ≥ 0.  (66) 
In the case that 𝐱 is parallel to √𝐛 and ‖𝐱‖ = 1, 𝐳 = 𝟎, and  
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𝐱் ൭𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩൱ 𝐱= 𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 ≥ 0, (67) 

because the minimum eigenvalue of 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ is 
0. Concludingly, if 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉, for any 𝐱 ∈ 𝑅, 𝐱் ൭𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩൱ 𝐱 ≥ 0. (68) 

This indicate that 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 ቂ𝐈 −√𝐛√𝐛் ∑ 𝑏ୀଵൗ ቃ  is positive semi-definite if 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉, that is,  𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩ ⪰ 0, (69) 

where ⪰ is the matrix inequality. 
 
Next, the reverse is examined. If 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ −𝜉 ቂ𝐈 − √𝐛√𝐛் ∑ 𝑏ୀଵൗ ቃ is positive semi-definite, its 
quadratic form is non-negative, and, due to Eq. (65), 𝐱் ൭𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩൱ 𝐱= 𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 − 𝜉𝐳்𝐳 ≥ 0. (70) 

In the case of 𝐱 = 𝐳 + 𝜃√𝐛 ∈ 𝕏ଶ (𝐱√𝐛,  ‖𝐱‖ = 1),  𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 − 𝜉 ≥ 0, (71) 
because ‖𝐱‖ = ‖𝐳‖ = 1. This indicates min.𝐱∈𝕏మ 𝐱்𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ𝐱 ≥ 𝜉. (72) 

Therefore, 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉  if 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 ቂ𝐈 − √𝐛√𝐛் ∑ 𝑏ୀଵൗ ቃ  is positive 
semi-definite. 
 
Conclusionally, 𝜆ଶ ቀ𝐁షభమ 𝐋መ [𝐖] 𝐁షభమቁ ≥ 𝜉  and 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 ቂ𝐈 − √𝐛√𝐛் ∑ 𝑏ୀଵൗ ቃ ⪰ 0 are in-
dentical. Therefore, Eq. (61) is re-formulated as the 
following semi-definite programming problem: max.𝐖,క  𝜉 
𝑠. 𝑡.  ൞ 𝐁షభమ 𝐋መ [𝐖] 𝐁షభమ − 𝜉 𝐈 − √𝐛√𝐛்∑ 𝑏ୀଵ ൩ ⪰ 0 𝐖 ∈ 𝕎                                                     

(73) 
 
(5) Example 

In this sub-section, we apply the above reinforce-
ment optimization problem to the 4-node U-shape 

network in Fig. 1 and the large-scale ETRN (emer-
gency transportation road network) in the Ishikawa 
and Toyama prefectures in Japan.  

The Laplacian matrix of the 4-node U-shape net-
work with 𝐁 = 𝐈 is given in Eq. (34). The reinforce-
ment optimization problem, whose budget is 1, for 
this network is expressed as max.௪భమ,௪మయ,௪యర,క 𝜉                                                     

      𝑠. 𝑡.  ⎩⎪⎨
⎪⎧ 𝐄 ⪰ 0                                              𝑤ଵଶ + 𝑤ଶଷ + 𝑤ଷସ ≤ 1                 0 ≤ 𝑤ଵଶ ≤ 1                                   0 ≤ 𝑤ଶଷ ≤ 1                                   0 ≤ 𝑤ଷସ ≤ 1                                    . (74) 

𝐄 = 

⎣⎢⎢
⎢⎡ ଵା௪భమିଷସక ష(భశೢభమ)శభర భర భరష(భశೢభమ)శభర మశೢభమశೢమయషయర ష(భశೢమయ)శభర భరభరక ష(భశೢమయ)శభర మశೢమయశೢయరషయర ష(భశೢయర)శభరభరక భర ష(భశೢయర)శభర భశೢయరషయర ⎦⎥⎥

⎥⎤ 
(75) 

The solution of the above problem is 𝑤ଵଶ =0.2,𝑤ଶଷ = 0.6,𝑤ଷସ = 0.2, 𝜉 = 0.8 . While the sec-
ond minimum eigenvalue before the reinforcement is 2 − √2 = 0.585⋯, it increases to 0.8 by 0.214⋯ 
after the above reinforcement. The reinforcement 
amount of link (2,3) that is located at the middle of 
the network is 0.6 and is the largest of all 3 links. 
From the standpoint of network connectivity, link (2,3) is the most important. On the other hand, those 
of links (1,2) and (3,4) are 0.2, respectively. These 
two links are located at the edge of the network, and 
their importance is less than link (2,3).  

From Eq. (53) , 𝜕𝜆ଶ 𝜕𝑤⁄ = ൫𝑦ଶ − 𝑦ଶ൯ଶ  be-
cause 𝑘 = 1 in this 4-node U-shape network. There-
fore, 𝜕𝜆ଶ 𝜕𝑤ଵଶ⁄ = 𝜕𝜆ଶ 𝜕𝑤ଷସ⁄ = 6 − 4√2 =0.343⋯ , and 𝜕𝜆ଶ 𝜕𝑤ଶଷ⁄ = 12 − 8√2 = 0.686⋯ . 
Thus, 𝜕𝜆ଶ 𝜕𝑤ଶଷ⁄  is exactly twice of  𝜕𝜆ଶ 𝜕𝑤ଵଶ⁄  and 𝜕𝜆ଶ 𝜕𝑤ଷସ⁄ . According to this local 
improvement result, the reinforcement amounts of 
links (1,2), (2,3), and (3,4) are 0.25, 0.5, and 0.25, 
respectively, for the situation that the budget is 1. 
This is slightly different from the global improve-
ment solution of Eq. (74), but they seem the same 
qualitatively. The local improvement is  

The Ishikawa and Toyama ETRN network con-
tains 1058 links and 653 nodes. In this case, each 
component of the adjacency matrix, namely, link 
strength, is given by an inverse of link’s distance. The 
budget is set at 10 for a certain convenience. We used 
the SDPA-M package of MATLAB, and it took 25.20 
seconds to solve the problem with a PC with Core-i7-
6600U and 8GB RAM. Fig. 15 illustrates the opti-
mum reinforcement results to Ishikawa-Toyama 
ETRN 
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4. CONCLUSIONS 
 

In this study, we propose an equal distribution 
problem for  method to evaluate the network con-nec-
tivity using the Laplacian matrix, and discuss why the 
second minimum eigenvalue of the Laplacian matrix 
of the network represents an indicator of network 
connectivity. Then, we develop an optimization prob-
lem to reinforce the road network connectivity using 
the second minimum eigen-value of its Laplacian 
matrix, and prove that it is formulated as a convex 
optimization problem. Furthermore, we show that the 
optimization problem is also formulated as a semi-
definite programming, which is an extension of linear 
programming. 
 
 
APPENDIX 

We can confirm 𝐱(𝑡) = 𝐁ିଵ𝐱(𝑡) as follows: 

𝑑𝑑𝑡 𝐱(𝑡)

= −
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝑎ଵ
ୀଵ −𝑎ଵଶ ⋯ −𝑎ଵ
−𝑎ଵଶ 𝑎ଶ

ୀଵ ⋯ −𝑎ଶ⋮ ⋮ ⋱ ⋮−𝑎ଵ −𝑎ଶ ⋯ 𝑎
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎢
⎢⎡𝑥ଵ(𝑡)𝑏ଵ𝑥ଶ(𝑡)𝑏ଶ⋮𝑥(𝑡)𝑏 ⎦⎥⎥

⎥⎥⎥
⎥⎤

= −𝐋𝐁ିଵ𝐱(𝑡).                                          (𝑎1)

 

Each component of 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ , 𝐋௦  is ex-
pressed as 𝐋௦ ≔ 𝐁షభమ𝐋𝐁షభమ

= 𝐁షభమ

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡𝑎ଵ
ୀଵ −𝑎ଵଶ ⋯ −𝑎ଵ
−𝑎ଵଶ 𝑎ଶ

ୀଵ ⋯ −𝑎ଶ⋮ ⋮ ⋱ ⋮−𝑎ଵ −𝑎ଶ ⋯ 𝑎
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

 

 
Fig. 15  The results of Ishikawa-Toyama ETRN 
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×
⎣⎢⎢
⎢⎢⎢
⎢⎡ 1ඥ𝑏ଵ 0 ⋯ 0

0 1ඥ𝑏ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 1ඥ𝑏⎦⎥⎥
⎥⎥⎥
⎥⎤      

=
⎣⎢⎢
⎢⎢⎢
⎢⎡ 1ඥ𝑏ଵ 0 ⋯ 0

0 1ඥ𝑏ଶ ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 1ඥ𝑏⎦⎥⎥
⎥⎥⎥
⎥⎤ ×

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 1ඥ𝑏ଵ𝑎ଵ

ୀଵ − 𝑎ଵଶඥ𝑏ଶ ⋯ − 𝑎ଵඥ𝑏− 𝑎ଵଶඥ𝑏ଵ 1ඥ𝑏ଶ𝑎ଶ
ୀଵ ⋯ − 𝑎ଶඥ𝑏⋮ ⋮ ⋱ ⋮− 𝑎ଵඥ𝑏ଵ − 𝑎ଶඥ𝑏ଶ ⋯ 1ඥ𝑏𝑎

ୀଵ ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤  

=
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝑎ଵ𝑏ଵ
ୀଵ − 𝑎ଵଶඥ𝑏ଵ𝑏ଶ ⋯ − 𝑎ଵඥ𝑏ଵ𝑏− 𝑎ଵଶඥ𝑏ଵ𝑏ଶ 𝑎ଶ𝑏ଶ

ୀଵ ⋯ − 𝑎ଶඥ𝑏ଶ𝑏⋮ ⋮ ⋱ ⋮− 𝑎ଵඥ𝑏ଵ𝑏 − 𝑎ଶඥ𝑏ଶ𝑏 ⋯ 𝑎𝑏
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

(𝑎2) 

The row vector for the 𝑖th row of 𝐋௦ is denoted by [𝐋௦]∙. Let denote  [𝐋௦]∙√𝐛 =− 𝑎ଵඥ𝑏 − ⋯− 𝑎ିଵඥ𝑏 + 1ඥ𝑏𝑎
ୀଵ − 𝑎ିଵඥ𝑏 − ⋯= 0 (𝑎3) 

where  

√𝐛 = ⎣⎢⎢
⎢⎡ඥ𝑏ଵඥ𝑏ଶ⋮ඥ𝑏⎦⎥⎥

⎥⎤ . (𝑎4) 

The above is applied for each row of 𝐋௦. Therefore,  𝐋௦√𝐛 = 𝟎, (𝑎5) 
where 𝟎 is the null vector whose components are all 
0. Thus, 0 is an eigenvalue of 𝐋௦ and √𝐛 = 𝐛భమ is its 
eigenvector. 

To derive the quadratic form of 𝐁షభమ 𝐋 𝐁షభమ, the fol-
lowing equation is examined: 𝑎 ቆ 𝑥ඥ𝑏 − 𝑥ඥ𝑏ቇଶ

ୀଵ

ୀଵ= 𝑎 ൭𝑥ଶ𝑏 − 2 𝑥𝑥ඥ𝑏ඥ𝑏 + 𝑥ଶ𝑏 ൱
ୀଵ


ୀଵ= 2𝑥ଶ𝑏 𝑎

ୀଵ

ୀଵ − 2 𝑥𝑥ඥ𝑏ඥ𝑏

ୀଵ

ୀଵ . (𝑎6) 

From Eq. (𝑎1),  𝐱்𝐁షభమ𝐋𝐁షభమ𝐱
= 𝐱்𝐁షభమ

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝑥ଵඥ𝑏ଵ𝑎ଵ

ୀଵ − 𝑥ଶඥ𝑏ଶ 𝑎ଵଶ − ⋯− 𝑥ඥ𝑏 𝑎ଵ− 𝑥ଵඥ𝑏ଵ 𝑎ଵଶ + 𝑥ଶඥ𝑏ଶ𝑎ଶ
ୀଵ − ⋯− 𝑥ඥ𝑏 𝑎ଶ⋮− 𝑥ଵඥ𝑏ଵ 𝑎ଵ − 𝑥ଶඥ𝑏ଶ 𝑎ଶ − ⋯+ 𝑥ඥ𝑏𝑎

ୀଵ ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

= 𝐱்
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 𝑥ଵ𝑏ଵ𝑎ଵ

ୀଵ − 𝑥ඥ𝑏ଵඥ𝑏 𝑎ଵ
ୀଵ𝑥ଶ𝑏ଶ𝑎ଶ

ୀଵ − 𝑥ඥ𝑏ଶඥ𝑏 𝑎ଶ
ୀଵ⋮𝑥𝑏𝑎

ୀଵ − 𝑥ඥ𝑏ඥ𝑏 𝑎
ୀଵ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

= 𝑥ଶ𝑏 𝑎
ୀଵ


ୀଵ − 𝑥𝑥ඥ𝑏ඥ𝑏

ୀଵ

ୀଵ (𝑎7)

 

From Eqs. (𝑏1) And (𝑏2), we obtain the quadratic 
form of 𝐁షభమ 𝐋 𝐁షభమ as follows: 𝐱்𝐋௦𝐱 = 𝐱்𝐁షభమ𝐋𝐁షభమ𝐱= 12𝑎 ቆ 𝑥ඥ𝑏 − 𝑥ඥ𝑏ቇଶ

ୀଵ

ୀଵ . (𝑎8) 

As the above equation indicates, the quadratic form 
of 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ  is non-negative. Therefore, 𝐋௦ =𝐁షభమ𝐋𝐁షభమ is positive semi-definite. A matrix is posi-
tive semi-definite if and only if all eigenvalues are 
non-negative (e.g. Strang, 1976), and all eigenvalues 
of 𝐋௦ are non-negative. Eq. (𝑎5) shows that 0 is an 
eigenvalue of 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ , and this is the mini-
mum of all. Thus, we confirm 0 = 𝜆ଵ ≤ 𝜆ଶ ≤ ⋯ ≤𝜆 as eigenvalues of 𝐋௦ = 𝐁షభమ𝐋𝐁షభమ.  

The Rayleigh quotient is given by 𝐱்𝐀𝐱 𝐱்𝐱⁄  (e.g. 
Strang, 1976), and minimizing the Rayleigh quotient 
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gives the minimum eigenvector; min. 𝐱்𝐀𝐱 𝐱்𝐱⁄  
subject to 𝐱்𝐱 = 1,  for a real symmetric matrix 𝐀. 
The second minimum eigenvector is given by the fol-
lowing minimization problem: min.𝐱∈ோ𝒏 𝐱்𝐀𝐱        𝑠. 𝑡.   𝐱𝐲ଵ,   ‖𝐱‖ = 1 (𝑎9) 
where ‖𝐱‖ = √𝐱்𝐱, 𝐲ଵ is the minimum eigenvector, 
and  is orthogonal. In the problem of equation (𝑎9), 
x⊥𝐲ଵ is imposed, and it yields the second minimum 
eigenvector. The minimum eigenvector of 𝐋௦ =𝐁షభమ𝐋𝐁షభమ is √𝐛, as stated in Eq. (𝑎5), and  𝜆ଶ(𝐋௦) = 𝜆ଶ ቀ𝐁షభమ𝐋𝐁షభమቁ = min.𝐱∈𝕏మ 𝐱்𝐁షభమ𝐋𝐁షభమ𝐱 (𝑎10) 
where 𝜆ଶ(𝐋௦) is the second minimum eigenvalue of 𝐋௦ and 𝕏ଶ = ൛∀𝐱 | 𝐱√𝐛,  ‖𝐱‖ = 1ൟ.  
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