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This study macroscopically develops a dynamic model capable of describing equilibrium distribution of 

passenger arrivals in a congested rail transit system based on information of timetable and passenger pref-

erences. By applying the proposed model, insights into the design of management strategies are derived 

from a macroscopic view. More specifically, a conventional peak/off-peak timetable are numerically opti-

mized under user equilibrium. The optimal peak/off-peak timetable is found to be able to significantly 

reduce the sum of travel time cost and schedule delay cost. Besides, a one-step coarse pricing scheme is 

specified and its design is numerically evaluated. It is found that temporal settings (i.e., start and end time, 

duration) play a crucial role in the effectiveness of the pricing scheme. 
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1. Introduction 
 

Urban rail transit, with its high capacity and punc-

tuality, serves as a typical solution to commuters' 

travel demand during rush hours in most metropo-

lises1). However, travel experience of commuting by 

rail transit is frequently deteriorated by severe con-

gestion and unexpected delays. In many metropo-

lises, congestion and delay of rail transit have 

brought about tremendous psychological stress to 

commuters and considerable economic loss to the 

whole society. For example, Xu et al.2) reported that 

around one third of subway stations in Beijing 

adopted ordinary passenger flow control. Kariya-

zaki3) estimated that the social cost due to the delay 

of trains in Japan exceeded 1.8 billion dollars per 

year. When a train delays due to an unexpected event 

(e.g., person on the tracks, signal failure or mechani-

cal trouble), the delay propagates along the railway 

line. As a result, both in-vehicle crowding and on-

platform congestion become severer on the whole 

railway line. Even no accident occurs, in a high-fre-

quency operated urban rail transit line, chronic delays 

widely exist due to significantly extended dwelling 

time at stations or “knock-on delay” on the rail 

track3),4). Especially during the rush hours, passenger 

congestion on-platform and this kind of chronic de-

lays can easily develop into a vicious circle5). In order 

to relieve congestion and prevent the occurrence of 

delay, management strategies have long been inves-

tigated by researchers with different backgrounds. 

As an important management strategy, optimiza-

tion of train timetable received considerable attention 

in the past decades6) - 14). Although most of these stud-

ies consider the time-dependent passenger demand in 

their optimization, the demand itself is usually treated 

as given information. When the timetable is modified 

or new pricing schemes are implemented, many pas-

sengers would probably adjust their departure time 

from home. Thus, the time-dependent demand itself 

would change, which makes the system not opti-

mized again. Therefore, it is important to understand 

the interaction between passengers' decision making 

on their departure time and operational environment 

of rail transit system (e.g., timetable and congestion 

information, pricing scheme). As a transportation de-

mand management (TDM) strategy, motivating com-

muters to change their departure time choice is con-
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sidered to be effective to temporally flatten the surg-

ing demand. 

Economists like Vickrey15) and Henderson16) might 

be the first to consider individuals' departure time de-

cisions for commuting problem by private cars. They 

considered the existence of a bottleneck on the road 

and assumed that passengers minimized their total 

travel costs to determine their departure time. When 

the total travel cost is minimized for any individual, 

no one has the incentive to change his or her depar-

ture time, which is generally referred to as an equi-

librium state. So far, many studies had thoroughly 

discussed the equilibrium distribution of arrivals at 

the bottleneck, either in a deterministic17) – 20)  or sto-

chastic setting21) – 23). However, these bottleneck mod-

els for road traffic may not be readily applicable to 

rail transit since the mechanism of congestion and de-

lay are quite different between these two systems. As 

mentioned above, the delay of trains in many densely 

populated Asian cities are mainly caused by the vi-

cious circle of passenger congestion and bunching 

phenomenon of high-frequency operated trains. 

Therefore, equilibrium model targeted at the com-

muting problem for these cities should take into con-

sideration of this mechanism. While in fact, most 

studies tackling on rail transit assumed a constant 

travel time24) – 29), which implied that delay of trains 

due to passenger congestion was not considered.  

This study aims to develop an macroscopic model 

to estimate equilibrium distribution of passenger ar-

rivals in a congested urban rail transit system. Pas-

senger congestion influence and “knock-on delay” on 

the rail track are described by a train fundamental di-

agram (train-FD) sub-model first proposed by Seo et 

al.30). Due to its high tractability, the proposed model 

can serve as an effective tool to evaluate management 

strategies' influence on passengers' departure time 

choice behavior. More specifically, based on the 

travel cost assumption, the equilibrium travel time 

was first obtained. Then, given the scheduled timeta-

ble and equilibrium travel time, the dynamics of rail 

transit system was described. Next, equilibrium dis-

tribution of passenger arrivals was derived by substi-

tuting vehicle-based average density and flow of 

trains into the inverse function of train-FD. Finally, 

the characteristics of the equilibrium and applications 

of the proposed model are numerically described. 

This paper is structured as follows. Section 2 

briefly describes the scope of the proposed model, in-

troduces the assumptions of passengers' travel cost 

and operation rules of rail transit. Section 3 formu-

lates the equilibrium model, gives the solution 

method and existence conditions of the equilibrium. 

Section 4 describes the characteristics of the equilib-

rium in terms of rail transit performance and passen-

ger arrival distribution. Section 5 applies the pro-

posed equilibrium model to the management strate-

gies including peak/off-peak timetable optimization 

and coarse pricing. Finally, conclusions and probable 

future works are briefly summarized in Section 6.  

 

 

2. Model assumption 
 

The rail transit system in this paper refers to a sin-

gle urban railway line with multiple stations homo-

geneously located along the line. Meanwhile, it is as-

sumed to be a strict First-In-First-Out (FIFO) system 

so that trains on the track cannot overtake each other. 

Besides, we make a major premise that travel time in 

rail transit system changes due to both passenger con-

gestion and train congestion on the track. In addition, 

we assume that passengers can always board the next 

arriving train and will not change to other travel mode 

or give up their travel. 

 

(1) Passenger travel cost 

In this study, we assume that individuals mainly 

trade off the travel time cost (TTC) and schedule de-

lay cost (SDC) to determine their departure time from 

home. The travel time from home to the nearest sta-

tion for any individual is assumed to be constant so 

that it is equivalent to consider passengers' arrival 

time at the station. For the sake of clarity, "passenger 

departure" refers to the departure from the last station 

hereinafter. Therefore, the total travel cost of individ-

ual 𝑖 when he or she departs the last station at time 𝑡 

is defined as: 

𝑇𝐶(𝑡, 𝑡𝑖
∗) = 𝛼(𝑇(𝑡) − 𝑇0) + 𝑠(𝑡, 𝑡𝑖

∗)       (1) 

where 𝑡𝑖
∗ is the desired departure time from the last 

station for individual 𝑖. Here, 𝑡𝑖
∗ is also equivalent to 

the work start time for individual 𝑖 if we take the time 

from the last station to workplace as a constant value. 

𝛼 (𝛼 > 0) is value of time for congestion delay, 𝑇(𝑡) 

is the travel time of an individual when he or she de-

parts the rail transit system at time 𝑡. For simplicity, 

𝑇(𝑡) is the travel time of both trains and passengers 

if we set the boundary of the input-output system by 

the first and the last station for those commuting pas-

sengers. In this sense, this model can be applied to 

either one section or the whole rail transit line. But 

more practically, it is better to pick up the most con-

gested section of a rail transit line and then consider 

the largest OD demand in this section. 𝑇0 is the min-

imum travel time before the morning commute starts, 

and 𝑠(𝑡, 𝑡𝑖
∗) is the schedule delay cost for individual 

𝑖 when he or she departs the system at time 𝑡. For the 

simplest case when all passengers have the same 

fixed desired departure time or work start time, 𝑡∗, 
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𝑡𝑖
∗ = 𝑡∗ for any 𝑖. 

Here, we employ the piece-wise linear schedule 

delay function widely used in most previous stud-

ies18), 25), 29), 31), 32). Schedule delay 𝑠(𝑡, 𝑡𝑖
∗) is defined 

as: 

𝑠(𝑡, 𝑡𝑖
∗) = {

𝛽(𝑡𝑖
∗ − 𝑡),    if 𝑡 ≤ 𝑡𝑖

∗,

𝛾(𝑡 − 𝑡𝑖
∗),    if 𝑡 > 𝑡𝑖

∗,              (2) 

where 𝛽 and 𝛾 (𝛾 > 𝛽 > 0) are the value of time for 

early and late schedule delay, respectively. For sim-

plicity, we assume that all the individuals have the 

same time cost 𝛼, 𝛽 and 𝛾. 

 

(2) Rail transit operation 

Denote the total length of the railway line as 𝐿 and 

distance between adjacent stations as 𝑙. Trains' dwell-

ing time 𝑡𝑏 at each station is defined as: 

𝑡𝑏 = 𝑡𝑏0 + 𝜇𝑎𝑝𝐻,                      (3) 

where 𝑡𝑏0 is the minimum dwelling time, 𝜇 is the rate 

of increase of dwelling time with boarding passen-

gers' number on the platform, 𝑎𝑝 is the passengers' 

arrival rate at platform to board the next arriving 

train, and 𝐻 is the headway of two succeeding trains. 

The cruising behaviour of trains are assumed to be 

described by the Newell's simplified car-following 

model33). In this model, a vehicle either travels at its 

desired speed or follows the preceding vehicle while 

keeping the safety clearance. More specifically, posi-

tion of train 𝑚 at time 𝑡 is described by 

𝑥𝑚(𝑡) = min{𝑥𝑚(𝑡 − 𝜏) + 𝑣𝑓𝜏, 𝑥𝑚−1(𝑡 − 𝜏) − 𝛿}, 

(4) 

where 𝑚 − 1 refers to the preceding train of train 𝑚, 

𝜏 is the minimum time headway of successive trains, 

and 𝛿 is the minimum spacing. The first term repre-

sents the free-flow regime where the train cruises 

with its desired speed 𝑣𝑓. The second term indicates 

the congested regime where the train decreases its 

speed to maintain the minimum headway and spac-

ing. 

Now, the relation among train flow 𝑞 (𝑞 = 1/𝐻), 

train density 𝑘 , and passenger arrival rate 𝑎𝑝  in 

steady state, named as train fundamental diagram 

(train-FD), can be expressed as: 

𝑞 = 𝑄(𝑘, 𝑎𝑝).                            (5) 

Based on the operation principles described in Eq. 

(3) and Eq. (4), the train-FD in Eq. (5) can be ex-

plicitly expressed as: 

(6) 

where 𝑞∗(𝑎𝑝)  and 𝑘∗(𝑎𝑝)  are critical state train-

flow and train-density, respectively, represented as: 

𝑞∗(𝑎𝑝) =
1−𝜇𝑎𝑝

𝑡𝑏0+𝛿/𝑣𝑓+𝜏,                       (7) 

𝑘∗(𝑎𝑝) =
(1−𝜇𝑎𝑝)(𝑡𝑏0+𝑙/𝑣𝑓)

(𝑡𝑏0+𝛿/𝑣𝑓+𝜏)𝑙
+

𝜇𝑎𝑝

𝑙 .         (8) 

The derivation of Eq. (6) can be referred in the origi-

nal paper by Seo et al.30). 

 

 

3. User equilibrium 
 

In this section, we first derive the passenger arrival 

rate under user equilibrium. Then, we show the solu-

tion method, and finally, the existence conditions of 

the equilibrium are briefly discussed. 

 

(1) Derivation 

The equilibrium state is reached when the total 

travel cost of any individual can not be reduced. De-

note 𝑡𝑖 as the departure time of individual 𝑖 from rail 

transit under equilibrium, the following equation 

holds: 

𝜕𝑇𝐶(𝑡𝑖,𝑡𝑖
∗)

𝜕𝑡
= 0.                          (9) 

The derivative of travel time 𝑇𝑇(𝑡) can therefore be 

obtained by substituting Eq. (1) and Eq. (2) into Eq. 

(9) as: 

𝑑𝑇(𝑡𝑖)

𝑑𝑡
= {

𝛽/𝛼,       if 𝑡 < 𝑡𝑖
∗,

−𝛾/𝛼,    if 𝑡 ≥ 𝑡𝑖
∗.             (10) 

It can be observed that the values of travel time de-

rivative do not depend on the desired departure time 

𝑡𝑖
∗. This is, however, not a general conclusion but a 

special result when piece-wise linear schedule delay 

function is employed. Eq. (10) implies that for pas-

sengers who depart the last station earlier than their 

desired departure time, the travel time they have ex-

perienced is increasing. On the contrary, for passen-

gers who depart late, the travel time is decreasing. 

Since the derivatives of travel time in Eq. (10) are two 

constant values, travel time evolution under the equi-

librium will be a piece-wise linear function with a 

single peak. If FIFO and First-In-First-Work (FIFW) 

hold, the travel time 𝑇(𝑡) maximizes at 𝑡𝑚𝑎𝑥  when 

the schedule delay is zero. When all passengers have 

the same fixed desired departure time 𝑡∗, 𝑡𝑚𝑎𝑥 = 𝑡∗. 

Finally, the travel time 𝑇(𝑡) under user equilibrium 

can be described as: 

(11) 
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where 𝑡0 and 𝑡𝑒𝑑 represent the start and end time of 

the equilibrium, respectively. Meanwhile, 𝑡0 and 𝑡𝑒𝑑 

are also the time when commuters start and finish de-

parting the rail transit system, respectively. 

In order to derive the equilibrium distribution of 

passenger arrivals, the dynamic traffic states of the 

rail transit system should be described. We first con-

sider the rail transit system as a input-output system 

that can be approximately described by a fluid model. 

Denote 𝑎(𝑡) and 𝑑(𝑡) as the inflow and outflow of 

trains. Accordingly, 𝐴(𝑡) and 𝐷(𝑡) are the cumula-

tive numbers of 𝑎(𝑡) and 𝑎(𝑡), respectively. Accord-

ing to FIFO, the cumulative departures of trains at 𝑡 

should be equal to the cumulative arrivals of trains at 

𝑡 − 𝑇(𝑡), which can be written like: 

𝐷(𝑡) = 𝐴(𝑡 − 𝑇(𝑡)).                (12) 

Differentiate the both sides of this equation we can 

get 

𝑑(𝑡) = 𝑎(𝑡 − 𝑇(𝑡)) (1 −
𝑑𝑇(𝑡)

𝑑𝑡
).       (13) 

Then, it is natural to assume that average density and 

flow of trains follow the steady state train-FD intro-

duced in Section 2(2). Thus, the equilibrium passen-

ger arrival rate can be calculated by the inverse func-

tion of train-FD as: 

𝑎𝑝 = 𝑄−1 (𝑘̅(𝑡), 𝑞̅(𝑡)).                (14) 

The ground of this assumption is that by aggregating 

the density and flow, their sudden change with time 

can be flattened, and the traffic states represented by 

the averaged variables can approximately be re-

garded as the steady state. 

Here, we adopted the vehicle-based harmonic 

mean to be applied in Eq. (14) since it is simple and 

tractable. More specifically, the average flow 𝑞(𝑛) 

experienced by train 𝑛 (or equivalently average head-

way 𝐻(𝑛)) can be written as: 

𝑞(𝑛) =
1

𝐻(𝑛)
= (

𝐻𝑎(𝑛)+𝐻𝑑(𝑛)

2
)

−1

.        (15) 

Where 𝐻𝑎(𝑛) and 𝐻𝑑(𝑛) are the time headways of 

train 𝑛 − 1  and train 𝑛  (simply referred to as the 

headway of train 𝑛 hereinafter) at the first arrival sta-

tion and the last departure station, respectively. Ac-

cording to the definition, 𝐻𝑎(𝑛) and 𝐻𝑑(𝑛) can be 

further expressed as: 

𝐻𝑎(𝑛) =
𝑑(𝑡−𝑇𝑇(𝑡))

𝑑𝑛
=

1

𝑎(𝑡−𝑇(𝑡)),        (16a) 

𝐻𝑑(𝑛) =
𝑑𝑡

𝑑𝑛
=

1

𝑑(𝑡).                  (16b) 

Similarly, the average density 𝑘(𝑛) (or equivalently 

average spacing 𝑠(𝑛) can be written as: 

𝑘(𝑛) =
1

𝑠(𝑛)
= (

𝑠𝑎(𝑛)+𝑠𝑑(𝑛)

2
)

−1

,        (17) 

𝑠𝑎(𝑛) = 𝑣̅(𝑛)𝐻𝑎(𝑛) =
𝐿

𝑇(𝑛)
𝐻𝑎(𝑛),     (18a) 

𝑠𝑑(𝑛) = 𝑣̅(𝑛)𝐻𝑑(𝑛) =
𝐿

𝑇(𝑛)
𝐻𝑑(𝑛).     (18b) 

Where 𝑣̅(𝑛) is the average travelling speed of train 𝑛 

and 𝑇(𝑛) is the travel time of train 𝑛 from the first 

station to the last station. For a more intuitive under-

standing, we specify the definitions of these variables 

by an illustration in Fig. 1. 

 
(a) Trajectories of trains during morning commute 

 
(b) Simplified trajectories of trains 

Fig. 1 An example of trajectories of trains and definition 

of variables. 

 

Fig. 1(a) gives an example of trajectories of trains op-

erating on a railway line with four stations from 

"Sta3" to "Sta6". When the morning commute starts, 

passenger arrival rate increases with time so that the 

dwelling time of trains is gradually extended at each 

station as can be understood from Fig. 1(a). To de-

scribe the average density and flow, the trajectories 

are simplified by connecting the start and end point 

on the time-space diagram. Then, the whole trip of a 

train 𝑛 can be macroscopically described by its aver-

age travelling speed 𝑣̅(𝑛)  or travel time 𝑇(𝑛)  as 

shown in Fig. 1(b). In addition, if the time-space dia-

gram is delimited as the trapezium in red dotted line 

like 𝑇𝑆(𝑛) in Fig. 1(b), you may find that the defini-

tions of 𝑞(𝑛) and 𝑘(𝑛) in Eq. (15) and Eq. (17) are 

consistent with Edie’s definition in a time-space dia-

gram34). 

In a single route FIFO rail transit system, another 

relation between headways and travel time for two 

succeeding trains 𝑛 − 1 and 𝑛 should hold as: 

𝐻𝑑(𝑛) − 𝐻𝑎(𝑛) = 𝑇(𝑛) − 𝑇(𝑛 − 1).  (19) 
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Now, when the inflow 𝑎(𝑡)  (or equivalently 

𝐻𝑎(𝑛) for all 𝑛 ∈ 𝑁) is given and equilibrium travel 

time 𝑇(𝑡)  is obtained from Eq. (11), outflow 𝑑(𝑡) 

and 𝐻𝑑(𝑛) can be obtained by Eq. (13) and Eq. (16b). 

Then, vehicle-based travel time 𝑇(𝑛) can be calcu-

lated by Eq. (19) with an initial 𝑇(1). Next, the aver-

age density 𝑘(𝑛) and flow 𝑞(𝑛) for all 𝑛 ∈ 𝑁 can be 

calculated by Eq. (17) and Eq. (15), respectively. Fi-

nally, passenger arrival rate under equilibrium can be 

derived by substituting the 𝑞(𝑛) and 𝑘(𝑛) into Eq. 

(14) as: 

𝑎𝑝(𝑛) = 𝑄−1(𝑘(𝑛), 𝑞(𝑛)),             (20) 

where 𝑎𝑝(𝑛) can be interpreted as the time-averaged 

passenger arrival rate during the trip of train 𝑛. 

For a specific morning commute situation, bound-

ary conditions have to be introduced to get feasible 

results. For simplicity, we only consider the case 

when all passengers have the same desired departure 

time (or work start time). The inverse problem in Eq. 

(20) can be solved if the start and end time (i.e., 𝑡0 

and 𝑡𝑒𝑑 ) of the morning commute are determined. 

Therefore, two boundary conditions should be intro-

duced. The first one is that the travel time when com-

muters finish departing the rail transit system should 

be the same with the initial travel time before morn-

ing commute starts, as described by Eq. (21). The 

second one is that there is a total travel demand de-

noted by 𝑁𝑝 for commuters as described by Eq. (22). 

𝑇(𝑡𝑒𝑑) = 𝑇0 =
𝐿

𝑙
(𝑡𝑏0 + 𝑙/𝑣𝑓),          (21) 

∫ 𝑎𝑝(𝑛)
𝑁

1
𝑑𝑛 = 𝑁𝑝.                    (22) 

In addition, 𝑎𝑝(𝑛) calculated from Eq. (20) should 

be adjusted so that commuters only arrive during 
[𝑡0, 𝑡𝑒𝑎] (i.e., Eq. (23)), where 𝑡𝑒𝑎 is the time when 

final commuters arrive the rail transit system as ex-

plained in Eq. (24). 

{
𝑎𝑝(𝑛) ≥ 0,       if 𝑡0 ≤ 𝑡(𝑛) ≤ 𝑡𝑒𝑎

𝑎𝑝(𝑛) = 0,                      otherwise ,     (23) 

𝑡𝑒𝑎 = 𝑡𝑒𝑑 − 𝑇(𝑡𝑒𝑑) = 𝑡𝑒𝑑 − 𝑇0,      (24) 

 

(2) Solution method 

The calculation process to solve the problem is 

shown in Algorithm 1, where ∆ is the step size of 

time, and 𝑁𝜀 is the tolerance limit of passenger num-

ber. 

 

 

(2) Existence conditions of equilibrium 

When the travel time under the equilibrium and 

train-FD are jointly employed, several constraints 

have to be imposed to ensure the calculation results 

are physically feasible. In fact, train-FD is a bounded 

set in which all feasible traffic states (i.e., sets of 

{𝑘, 𝑎𝑝, 𝑞} that conform to Eq. (6)) are included. In 

other words, any traffic state outside of train-FD can-

not be reached due to the physical limits of a rail 

transit system. 

The first constraint is that the outflow of trains 

should always be positive, which means: 

𝑑(𝑡) = 𝑎(𝑡 − 𝑇(𝑡)) (1 −
𝑑𝑇(𝑡)

𝑑𝑡
) > 0, ∀𝑡.  (25) 

Train inflow 𝑎(𝑡), in this study, is treated as a posi-

tive given input so that 1 −  𝑑𝑇(𝑡)/𝑑𝑡 >  0 should 

hold all the time. Substitute Eq. (10) into this formula 

we can get 

𝛼 > 𝛽.                               (26) 
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This constraint is consistent with most equilibrium 

models for road traffic (e.g., Hendrickson and 

Kocur18); Arnott et al.35)). 

The second constraint is that passenger arrival rate 

𝑎𝑝(𝑛) calculated from Eq. (20) should not be nega-

tive as written in Eq. (27). 

𝑎𝑝(𝑛) ≥ 0, ∀𝑛.                      (27) 

In fact, this constraint is equivalent to that the set of 
(𝑘(𝑛), 𝑞(𝑛)) calculated from equilibrium travel time 

should not exceed the boundary of train-FD. How-

ever, the evolution of (𝑘(𝑛), 𝑞(𝑛)) depends on not 

only the constant operational parameters, but also the 

settings of train inflow and total travel demand. To 

obtain an explicit expression of Eq. (29), we consider 

a simplified case when inflow is constant (i.e., 

𝑎(𝑡) ≡ 𝑎𝑐). From the discussion in Section 4 it can 

be understood that as long as the upper right corner 

of (𝑘(𝑛), 𝑞(𝑛)) loop does not exceed the congested 

regime boundary of train-FD, the whole loop of 
(𝑘(𝑛), 𝑞(𝑛)) will lie inside the train-FD. According 

to the equilibrium condition, the upper right corner of 
(𝑘(𝑛), 𝑞(𝑛)) loop refers to the state when the travel 

time is just maximized and starts to decrease. There-

fore, the right corner 𝑘𝑟𝑐(𝑛) and 𝑞𝑟𝑐(𝑛) can be writ-

ten as: 

𝑘𝑟𝑐(𝑛) =
𝑇𝑚𝑎𝑥

(
1

𝑎𝑐
+

1

𝑎𝑐(1+𝛾/𝛼)
)∙𝐿/2,               (28) 

𝑞𝑟𝑐(𝑛) =
1

(
1

𝑎𝑐
+

1

𝑎𝑐(1+𝛾/𝛼)
),                   (29) 

Then, the constraint that 𝑘𝑟𝑐(𝑛) and 𝑞𝑟𝑐(𝑛) does not 

exceed congested regime boundary of train-FD can 

be derived by substituting 𝑘𝑟𝑐(𝑛)  and 𝑞𝑟𝑐(𝑛)  into 

lower branch of Eq. (6) as: 

𝛼+𝛾

𝛼+𝛾/2
𝑎𝑐 [

𝑇𝑚𝑎𝑥

𝐿
+

(𝑙−𝛿)𝑡𝑏0+𝜏𝑙

𝛿𝑙
] ≤

1

𝛿,         (30) 

Where 𝑇𝑚𝑎𝑥  is an indicator of total travel demand 

since 𝑡0 is negatively correlated with total travel de-

mand as can be understood from Eq. (11). 

Finally, Eq. (26), Eq. (27) can be considered as the 

existence conditions of the equilibrium while Eq. 

(30) gives an explicit expression of Eq. (27) for a sim-

plified case when train inflow is constant. 

 

 

4. Characteristics of the equilibrium 
 

In this section, the characteristics of the equilibrium 

by the proposed model are discussed by a series of 

numerical examples. The parameter settings for the 

numerical examples are first introduced. Then, 

dynamics of rail transit and passenger arrival 

distribution under equilibrium for both high and low 

demand conditions are interpreted. 

The parameter settings used in the following nu-

merical examples are listed in Table 1. For simplic-

ity, the train inflow 𝑎(𝑡) is set as constant. 

 

Fig. 2 shows the costs under the equilibrium (i.e., 

during [𝑡0, 𝑡𝑒𝑑] ). Total travel cost 𝑇𝐶(𝑡, 𝑡∗)  under 

equilibrium is minimized and constant so that no one 

has the incentive to change his time choice behaviour. 

To achieve the constant total travel cost, travel time 

cost should first increase until 𝑡∗ and then decreases 

to 𝑡𝑒𝑑. 

 
Fig. 2 Travel costs under equilibrium. 

 

Fig. 3 depicts the cumulative curves of trains. It 

can be seen that 𝐷(𝑡) will first diverge from 𝐴(𝑡) 

from 𝑡0  to 𝑡∗  and then approach to 𝐴(𝑡)  from 𝑡∗ to 

𝑡𝑒𝑑 . In this way, the travel time is under user user 

equilibrium as described in Eq. (11). 

 
Fig. 3 Cumulative number of trains. 

 

Fig. 4 shows the cumulative arrival and departure 

of passengers, the difference of two adjacent circles 

on the curve indicates the number of passengers car-

ried by the preceding train. It can also be observed 

that riding passenger numbers on trains before and 
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after 𝑡∗ significantly vary under the constant train in-

flow setting. 

 
Fig. 4 Cumulative number of passengers (𝑁𝑝 = 30000). 

 

Passenger arrival rate 𝑎𝑝(𝑖)  and departure rate 

𝑎𝑝(𝑖) are depicted in Fig. 5. It can be observed that 

𝑎𝑝(𝑖) has two peaks in this example, the large one 

corresponds to the arrival of commuters who experi-

enced the longest travel time but departed the system 

just before 𝑡∗ while the small one corresponds to the 

arrival of commuters who experienced shorter travel 

time at the cost of departing the system after 𝑡∗. Since 

𝑎𝑝(𝑖) is derived from the inverse function of train-

FD, how 𝑘(𝑖)  and 𝑞(𝑖)  evolve on train-FD is also 

drawn in Fig. 6. It can be seen that the evolution of 

(𝑘(𝑖), 𝑞(𝑖)) during the morning commute starts from 

the left boundary of train-FD and formulates a coun-

ter-clockwise closed loop within the train-FD. Di-

vided by 𝑎(𝑡) = 12 𝑡𝑟/ℎ, the lower half of the loop 

represents the average density and flow experienced 

by trains departing the system from 𝑡0  to 𝑡∗ , while 

the upper half represents the dynamics from 𝑡∗  to 

𝑡𝑒𝑑. The maximum of 𝑎𝑝 is reached at the lower right 

corner of the loop. In fact, if train inflow 𝑎(𝑡) is con-

stant and late departure in the schedule delay function 

(i.e., the condition 𝑡 > 𝑡𝑖
∗ in Eq. (2) is valid) is per-

mitted, passenger arrival rate with two-peaks appear 

when high travel demand forces (𝑘(𝑖), 𝑞(𝑖)) to enter 

the congested regime of train-FD. 

 
Fig. 5 Passenger flow (𝑁𝑝 = 30000) 

 

 
Fig. 6 Dynamics of density and flow on train-FD 

 

On one hand, if late departure is not permitted (i.e., 

only the condition 𝑡 ≤ 𝑡𝑖
∗  in Eq. (2) is valid), the 

travel time under the equilibrium will continue in-

creasing until 𝑡∗ so that 𝑘(𝑖) calculated from Eq. (17) 

also keeps increasing. As a result, (𝑘(𝑖), 𝑞(𝑖)) goes 

deeper into the train-FD from the left side so that 𝑎𝑝 

increases in the free-flow regime and decreases in the 

congested regime. Then, after 𝑡∗, no commuter de-

parts from the system (i.e., 𝑎𝑝 = 0 ) so that 

(𝑘(𝑖), 𝑞(𝑖)) suddenly jumps up to the upper bound-

ary of train-FD and finally returns to the initial point 

along the boundary of the train-FD. In this way, 𝑎𝑝 

will only have one peak. 

On the other hand, if the late departure is permitted 

but the total travel demand is rather low, 𝑎𝑝 may also 

have only one peak. Fig. 7 and Fig. 8 give an example 

when 𝑎𝑝 has one peak under the travel demand 𝑁𝑝 =

8000. The comparison of (𝑘(𝑖), 𝑞(𝑖)) evolution be-

tween high and low demand is also shown in Fig. 6. 

It can be understood that if (𝑘(𝑖), 𝑞(𝑖)) after 𝑡∗ (up-

per right of the loop) does not enter the congested re-

gime of train-FD, there will be only one peak for 𝑎𝑝. 

In other words, commuters who departed the system 

after 𝑡∗ are represented in the decline side of 𝑎𝑝 if to-

tal travel demand is low. On the contrary, when the 

demand is high, arrivals of early and late commuters 

are separated on the two peaks. This is a rather new 

and interesting characteristic of equilibrium distribu-

tion of passenger arrivals for a rail transit system. 

 
Fig. 7 Passenger flow (𝑁𝑝 = 8000) 
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Fig. 8 Cumulative number of passengers (𝑁𝑝 = 8000) 

 

5. Model applications 
 

By applying the proposed equilibrium model, this 

section aims to quantitatively analyze the policy im-

plications of timetable optimization and coarse pric-

ing, which are expected to derive insights into more 

efficient operation of railway system and flattening 

the surging passenger demand during rush hours. 

More specifically, the conventional peak/off-peak 

timetable is numerically optimized under user equi-

librium in the first subsection. A single-step coarse 

pricing scheme (including surcharge, reward and 

their combinations) is numerically evaluated based 

on indicators such as social cost, user cost and in-ve-

hicle crowding. 

 

(1) Peak/off-peak timetable optimization 

In this section, the optimization problem of a con-

ventional peak/off-peak timetable without pricing is 

discussed. Peak/off-peak timetable here refers to a 

simplified timetable pattern that 

 Only two types of dispatch frequencies (or in-

flow, referred to as 𝑎1 ≥ 𝑎2) are employed; 

 The high dispatch frequency lasts for an uninter-

rupted period enclosed by the low dispatch fre-

quency. 

Since this timetable pattern is widely employed in 

practice, it is desirable to explore the optimal setting 

of peak/off-peak timetable by the proposed model. 

This issue can be generalized as a bi-level optimiza-

tion problem described as: 

min
𝑎1,𝑎2∈Ω

𝐶𝑒 = min
𝑎1,𝑎2∈Ω

𝑓(𝑎1, 𝑎2|𝑁𝑝),        (31) 

where 𝐶𝑒 is the equilibrium cost, which is the same 

for all commuters under user equilibrium. Ω should 

be an enclosed area for two inflows. Here, for sim-

plicity, we consider an ideal case where trains that 

carry commuters and arrive the destination before 𝑡∗ 

are dispatched with inflow 𝑎1 , and other trains are 

dispatched with inflow 𝑎2, as shown in Fig. 9. 

 
Fig. 9 An ideal case of train cumulative curve for 

peak/off-peak timetable pattern. 

 

This ideal case is also reasonable because under 

the equilibrium, train ouflow before 𝑡∗  would be 

smaller than the inflow due to increasing passenger 

arrivals. On the contrary, outflow after 𝑡∗ would be 

larger than the inflow due to decreasing passenger ar-

rivals. Therefore, to allocate high inflow 𝑎1 to trains 

departing before 𝑡∗  would help maintain a higher 

level of average flow of railway system, while to al-

locate low inflow 𝑎2  after 𝑡∗  help avoid bunching 

phenomenon due to sudden decrease of passenger ar-

rivals. Under this ideal case, the available area for 𝑎1 

and 𝑎2 , Ω, can be expressed by the following four 

constraints: 

 
 

The first constraint clarifies that train inflow can 

not be larger than the reciprocal of minimum time 

headway 𝜏. The second constraint limits the achieva-

ble train inflow (due to available train fleet) as 𝑎0. 

The third and fourth constraints comes from the fea-

sible density and flow within train-FD, which is re-

lated to demand and has been explained in Eq. (30). 

In fact, 𝜔 can be explicitly derived from the duration 

ratio for 𝑎1 and 𝑎2 as: 

𝜔 =
𝛾(𝛼−𝛽)

𝛽(𝛼+𝛾)+𝛾(𝛼−𝛽),                      (36) 

1 − 𝜔 =
𝛽(𝛼+𝛾)

𝛽(𝛼+𝛾)+𝛾(𝛼−𝛽).                      (37) 

In fact, to explicitly express equilibrium cost 𝐶𝑒 as 

a function of 𝑎1, 𝑎2 and 𝑁𝑝 is tedious since it relates 

to train-FD and dynamic model. Here, a numerical 

(32) 
 

(33) 

 
(34) 
 

 

(35) 

第 62 回土木計画学研究発表会・講演集



 

 9 

solution is given to the optimization problem. The 

idea is to enumerate all feasible combinations of 𝑎1, 𝑎2 

that conforms to the first constraint. Then, run similar 

algorithm introduced in Algorithm 1. It can be ob-

served from Fig. 9 that when 𝑡0 is given, temporal 

setting of 𝑎1 and 𝑎2 can be determined, which means 

𝑎(𝑡) is obtained. Thus, the following steps are almost 

the same with Algorithm 1, only to add a check of 

third and fourth constraints as written in Eq. (36) and 

Eq. (37). The core part of the algorithm is a three-layer 

iteration process. The outer layer iterates 𝑎1 < 1/𝜏, the 

medium layer iterates 𝑎2 ≤ 𝑎1, the inner layer iterates 

𝑡0 to minimize 𝑁𝑝 error. Under some extreme combina-

tions of 𝑎1 and 𝑎2, the third and fourth constraints can-

not be met or the 𝑁𝑝 error is too large, which is consid-

ered to be not acceptable case. 

Here, an numerical example of optimization which 

still uses the parameter settings in Table 1 is given. 

The iteration sets the step length of inflow as 0.1 𝑡𝑟/ℎ, 

and in a range of [5, 30] 𝑡𝑟/ℎ. 𝑁𝑝 error tolerance is 500. 

Fig. 10 shows the calculation result, with 𝑎1 and 𝑎2 as 

horizontal and vertical axes color mapped by equilib-

rium cost 𝐶𝑒. It can be seen that equilibrium cost 𝐶𝑒 

minimized in an enclosed area of 𝑎1around [16,20] 𝑡𝑟/
ℎ and 𝑎2 around [9,11] 𝑡𝑟/ℎ. This also confirms that to 

adopt an high dispatch frequency enclosed by low dis-

patche frequency is reasonable from the perspective of 

reducing equilibrium travel cost. 

In addition, the constant train inflow situation dis-

cussed in Section 4 is represented by the red point in 

Fig. 10. It can be calculated that compared to constant 

case, the optimized peak/off-peak timetable could re-

duce the equilibrium cost up to around 18%, which is 

rather significant. Besides, the second constraint can be 

represented by the left side of the black line in Fig. 10 

depending on the value of 𝑎0. 

 
Fig. 10 An example of optimization result for peak/off-

peak timetable pattern. 

 

(2) Coarse pricing 

In this section, a practical pricing scheme: single-

step coarse pricing is numerically evaluated using the 

proposed model. Since the first-best (or continuous) 

pricing involves practical difficulties in collecting 

time-dependent fare or giving time-dependent re-

ward, an approximation, step-tolling, has been 

widely discussed for road traffic context35) – 37). With 

regard to rail transit, studies on fare scheme design 

and optimization are still at the beginning stage com-

pared to road traffic29), 38), 39). When a single-step 

coarse pricing scheme is introduced, user cost (UC) 

can be written as the following equation (for simplic-

ity, only consider the case when 𝑡𝑖
∗ = 𝑡∗ for any 𝑖): 

    (38) 

where +𝑝 > 0  refers to the single-step surcharge, 

−𝑝 < 0 refers to the single-step reward. 𝑡+  and 𝑡− 

are the start and end time of the pricing period, re-

spectively. In order to keep UC  unchanged dur-

ing[𝑡+, 𝑡−], sudden change of TTC will inevitably 

appear at 𝑡+  and 𝑡− . An illustration of costs when 

coarse pricing is applied is shown in Fig. 11. 

 
Fig. 11 Travel costs when coarse pricing applied. 

 

Further, since TTC is proportional to travel time 

𝑇(𝑡), the change of travel time at time boundary of 

pricing scheme ∆𝑇 = 𝑝/𝛼 has to be appropriately in-

terpreted. For road traffic, Arnott et al.35) proposed 

the concept of mass departures, Laih36) assumed the 

existence of additional lanes for drivers to wait. Lind-

sey et al.37) considered a more practical braking 

model to describe this phenomenon. For rail transit, 

mass departures are physically not possible since 

trains are cruising on the same track. Also, multiple 

trains (∆𝑛 ≥ 3) departing with minimum headway to 

realize ∆𝑇  (i.e., ∆𝑛(𝐻𝑑 − 𝜏) = 𝑝/𝛼) will break the 

equilibrium requirement since at least two trains 

would appear at one side of time boundary with min-

imum headway 𝜏, which is different from 𝐻𝑑. Note, 

the coarse pricing is not valid for the situation when 

trains are departing with minimum headway. The 

only feasible situation is that the change of travel time 

due to pricing is carried out by the two trains depart-

ing just before and after the time boundary. An ex-

ample of surcharge is shown in Fig.12. It can ob-

served that the headway of train 𝑚 + 1  and 𝑛 + 1 

departing just after 𝑡+  and 𝑡−  decreases/increases 

𝑝/𝛼. In this way, the sudden change of TTC is real-

ized without breaking the equilibrium. Meanwhile, a 

𝑎(𝑡) ≡ 12 
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constraint of 𝑝/𝛼 exists due to the FIFO and mini-

mum headway as: 

𝑝

𝛼
≤ 𝐻𝑑 − 𝜏,                           (39) 

 
Fig. 12 Cumulative curves when surcharge imposed dur-

ing [𝑡+, 𝑡−]. 
 

Then, when an appropriate pricing value 𝑝 is set, 

solution to the equilibrium model is basically the 

same with original problem, but only modifies the 

travel time with ∆𝑇 = 𝑝/𝛼 and corresponding 𝑘(𝑛) 

for trains departing between [𝑡+, 𝑡−]. The effective-

ness of coarse pricing are evaluated by the following 

three indicators in this study: 

∙ Social cost (SC) change (%) compared to no 

pricing situation; 

∙ User cost (UC) change (%) compared to no pric-

ing situation; 

∙ Standard deviation (STDEV) of riding passen-

ger number change (%) compared to no pricing 

situation. 

SC in this study refers to the sum of TTC and SDC. 

First, SC change evaluates whether the social welfare 

is improved or not since the monetary circulation be-

tween passengers and the operator is neutral from a 

social perspective. Second, UC change assess 

whether passengers benefit or not when the pricing 

scheme is implemented. Third, the change of riding 

passenger number 𝑛𝑝 STDEV is employed to check 

whether the in-vehicle crowding is relieved or not be-

cause STDEV of 𝑛𝑝 reflects the evenness of passen-

ger distribution among dispatched trains. The de-

crease of this STDEV indicates the difference of 𝑛𝑝 

between congested and uncongested trains is nar-

rowed. 

Since the effect of pricing value is obvious and 

limited by Eq. (39), it is more interesting to examine 

how the temporal settings affect the effectiveness of 

the coarse pricing. The duration (i.e., 𝑡− − 𝑡+) and 

end time of the coarse pricing are picked here as the 

indicators of temporal settings. Fig. 13 and Fig. 14 

show a series of numerical experiments of SC and UC 

change for the surcharge case 𝑝 = 2$. The train in-

flow in these scenarios takes the constant value 

𝑎(𝑡) = 12 𝑡𝑟/ℎ. The color represents the percentage 

of cost change as illustrated by the legend. On one 

hand, it can be observed from Fig. 13 that SC change 

strongly depends on the end time of surcharge. When 

the surcharge covers the both side of 𝑡∗ and ends at 

an appropriate time after 𝑡∗ (in this example 20 min), 

its effect is maximized. This is reasonable because 

when surcharge ends before 𝑡∗, the most congested 

trains carrying passengers who want to be on time are 

not surcharged, thus the reduction of TTC is weak-

ened. On the other hand, the user cost in Fig. 14 ba-

sically increases as long as the surcharge is imposed. 

The longer the duration, the earlier or later it ends, 

the higher user cost would be. 

 
Fig. 13 Social cost change (%) for surcharge case 

 

 
Fig. 14 User cost change (%) for surcharge case 

 

To further interpret the interior reason of UC and 

SC change, UC is decomposed to the sum of TTC, 

SDC and total pricing cost (TP). Fig. 15 and Fig. 16 

show an example of each cost component change un-

der a given duration (i.e., 𝑡− − 𝑡+ = 100 𝑚𝑖𝑛) or un-

der a given end time (i.e., 𝑡− − 𝑡∗ = 20 𝑚𝑖𝑛). On 

one hand, it can be observed from Fig. 15 that when 

the end time of 100 𝑚𝑖𝑛 surcharge moves from the 

left side to the right side of 𝑡∗, TP significantly in-

creases while TTC first decreases until 260 𝑚𝑖𝑛 (i.e., 

20 𝑚𝑖𝑛 after 𝑡∗) and then inversely increases. The in-

crease of TP means more passengers are surcharged. 

The change of TTC indicates that there may exist an 

optimal end time of the surcharge, if it ends further 

later, the surcharge will cover all late departed com-

muters and forces some of them to use earlier trains 

第 62 回土木計画学研究発表会・講演集



 

 11 

including those that have already been heavily con-

gested. As a result, riding passenger number differ-

ence is not efficiently reduced and TTC inversely in-

creases. SDC in this comparison slightly increases or 

decreases and does not show a consistent result. On 

the other hand, when the end time of the surcharge is 

fixed to cover the both sides of 𝑡∗ and the duration 

increases as shown in Fig. 16, it can be observed that 

the TTC slightly declines and then rises with duration 

extension while SDC almost remains unchanged. 

This indicates that when the surcharge coves an ap-

propriate period of both sides of 𝑡∗, it is not efficient 

to excessively extend the duration of surcharge (in 

this example, a duration around 100 𝑚𝑖𝑛 is optimal). 

 
Fig. 15 Cost breakdown when 𝑡− − 𝑡+ = 100 𝑚𝑖𝑛 for 

surcharge case. 

 

 
Fig. 16 Cost breakdown when 𝑡− − 𝑡∗ = 20 𝑚𝑖𝑛 for sur-

charge case. 
 

Similarly, the sensitivity of cost change is also 

conducted for the reward case as shown in Fig. 17 

and Fig. 18 (Reward 𝑝 = 2$  only given before 𝑡∗ 

and train inflow still takes the constant value 𝑎(𝑡) =
12 𝑡𝑟/ℎ). On one hand, it can be understood from 

Fig. 17 that SC change varies in a relatively small 

range compared to surcharge depending on both end 

time and duration, and there is an optimal end time 

and duration around (170 𝑚𝑖𝑛, 90 𝑚𝑖𝑛). When the 

end time of reward approaches 𝑡∗, SC inversely in-

crease. This is because giving reward to passengers 

who should be surcharged according to first-best 

pricing would encourage passengers to utilize con-

gested trains, as a result, TTC and SC increase. On 

the other hand, UC generally decreases as long as the 

reward is given as can be confirmed from Fig. 18. 

The longer the duration, the earlier it ends, the lower 

user cost would be. However, there also exists a limit 

for the reduction of UC around the left top of Fig. 18 

since giving reward before the start of commute does 

not have effect. 

 
Fig. 17 Social cost change (%) for reward case. 

 

 
Fig. 18 User cost change (%) for reward case. 

 

An example of cost breakdown for reward case is 

shown in Fig. 19 and Fig. 20 to further understand 

the reward effect on different components of the cost. 

On one hand, when the duration of the reward is 

fixed, it can be seen from Fig. 19 that TTC signifi-

cantly decreases when the reward ends earlier before 

𝑡∗. This is because the reward encourages some of the 

passengers to use the earlier trains, as a result, the dif-

ference of riding passenger number between con-

gested and uncongested trains narrows, thus TTC de-

clines. In addition, it can also be observed that when 

the reward ends earlier, SDC increases. This is rea-

sonable because when more passengers are encour-

aged to ride on earlier trains, their schedule delay un-

doubtedly raise. Therefore, when the increase of SDC 

just exceeds the decrease of TTC, SC is minimized 

(in this example around 170 𝑚𝑖𝑛). On the other hand, 

when the end time of reward is fixed as 70 𝑚𝑖𝑛 be-

fore 𝑡∗ in Fig. 20, TTC decreases with the extension 

of the reward period. The reason is the same as ex-

plained before. However, the minimum of SDC ap-

pears at 70 𝑚𝑖𝑛, which is also the minimum of SC. 

This result indicates that the use of reward is not the 
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longer the better. If the reward period is too long, the 

increase of SDC may exceed the decrease of TTC. 

Therefore, an appropriate period of reward suffi-

ciently earlier before 𝑡∗ is the most desirable situa-

tion. 

 
Fig. 19 Cost breakdown when 𝑡− − 𝑡+ = 90 𝑚𝑖𝑛 for re-

ward case. 

 

 
Fig. 20 Cost breakdown when 𝑡− − 𝑡∗ = −70 𝑚𝑖𝑛 for 

reward case. 

 

In addition, change of 𝑛𝑝  STDEV for both sur-

charge and reward cases are shown in Fig. 21 and 

Fig. 22. It can be observed from Fig. 21 that when 

surcharged is imposed, the change of  𝑛𝑝 STDEV be-

haves similar as that of SC in Fig. 13. The decrease 

of 𝑛𝑝 STDEV indicates that the in-vehicle crowding 

is more evenly distributed. Differently, 𝑛𝑝  STDEV 

change for reward case seems sensitive to both the 

pricing duration and end time as can be understood 

from Fig. 22. 𝑛𝑝 STDEV even significantly increases 

when the reward lasts 30 𝑚𝑖𝑛 and ends 20 𝑚𝑖𝑛 be-

fore 𝑡∗. To conclude, the change of 𝑛𝑝 STDEV is ba-

sically consistent with SC change, which implies that 

to reduce the SC basically will also alleviate in-vehi-

cle crowding. 

 
Fig. 21 STDEV of 𝑛𝑝 change for surcharge case (%). 

 

 
Fig. 22 STDEV of 𝑛𝑝 change for reward case (%). 

 

 

6. Conclusions and future work 

 

This paper proposed an macroscopic model to es-

timate equilibrium distribution of passenger arrivals 

for the morning commute problem in a congested ur-

ban rail transit system. Compared to the existing 

equilibrium models, this model is the first to incorpo-

rate the interaction between passenger congestion 

and operational performance of trains by employing 

a train-FD sub-model. 

With the proposed model, we numerically ana-

lysed the equilibrium distribution of passenger arri-

vals and found that total travel demand and train 

timetable all had significant influence on the charac-

teristics of the distribution. More specifically, if all 

passengers have to depart the rail transit system no 

later than their desired departure time, there will be 

only one peak for the equilibrium distribution of pas-

senger arrivals, otherwise, there may exist two peaks 

depending on the travel demand. When the travel de-

mand is low so that train density and flow do not en-

ter the congested regime of train-FD, the equilibrium 

distribution will also be unimodal. 

By applying the proposed model, a conventional 

peak/off-peak timetable pattern is numerically opti-

mized under user equilibrium. It is found that com-

pared to the constant dispatch frequency, the combi-

nation use of high and low dipatch frequencies could 

significantly reduce the equilibrium cost for commut-

ers. The implications from the numerical experiments 

of a single-step coarse pricing can be concluded as: 
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∙ By implementing one-step coarse pricing with-

out breaking the user equilibrium, social cost 

can be acceptably reduced. 

∙ The surcharge period should cover both sides of 

𝑡∗, while its duration is not necessary to be ex-

cessively long. 

∙ The reward period should end before 𝑡∗ with an 

appropriate time interval, while its duration has 

an optimal length from the perspective of social 

cost. 

There are still many issues that can be improved to 

further strengthen the reliability of the findings above 

and make the insights more applicable to practice. 

Here, three directions of future work can be consid-

ered. First, improvement and further investigation of 

the train-FD should be conducted. Traffic flow model 

used in this study assumes a homogeneous railway 

system, which can be improved to be more realistic 

by developing a train-FD model also applicable for 

heterogeneous railway system. Second, the equilib-

rium can be extended from two aspects. One is to 

consider the heterogeneity of commuting passengers 

which means the passenger’s value of time should be 

various and group-dependent. Another aspect is to 

consider including the in-vehicle crowding cost into 

the cost function. Third, two probable issues can be 

considered to improve the practicality of the pro-

posed model. One is to expand the single railway line 

system to simple network since passengers’ transfer 

at major stations plays a non-negligible role in morn-

ing commute. Another one is to conduct case studies 

on timetable optimization and pricing schemes with 

the proposed model. 
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