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In July 2018, a heavy rain disaster in southwestern Japan caused floods and landslides, resulting in large-
scale transport network disruptions. The network disruptions affected the socioeconomic aspect, leading to 
economic loss. Using the concept of resilience triangle and the Markovian route choice model (recursive 
logit model), this research explores the impacts of transport network disruptions on transport demand. We 
quantify the monetary loss caused by the road network disruptions using the logsum values obtained from 
the recursive logit model. The results indicate that the total monetary loss is around 5.7 billion Japanese 
Yen, even without considering the cost of congestion. This indicates that the resilience of transport network 
is one of the crucial components in estimating the benefits from transportation infrastructure investment. 
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1. INTRODUCTION 
 

The torrential rains and heavy flooding in south-
western Japan in July 2018 created a condition of ex-
treme disruption for the cities1), including several ar-
eas in Hiroshima Prefecture. Based on the flash re-
port of damage situation by heavy rain in Hiroshima 
Prefecture from the Cabinet Office Japan2), the num-
ber of housing damage is 15,176 and the number of 
death is 109. Particularly in the three cities and one 
special area, namely Hiroshima, Higashi-hiroshima, 
Kure, and Aki District, massive transport network 
disruptions were occurred on July 6 and 7, 20183), 
and it led people to postpone or cancel their trips. 

The problem of transportation network disruptions 
has been discussed from the viewpoint of transport 
network vulnerability. There are four methods of vul-
nerability analysis as mentioned by Taylor4), i.e., a) 
risk-based inventory assessment, which more consid-
ers in the infrastructure assets, b) topologically based 
assessment, considers the network structure and con-
nectivity, also identify the critical links and nodes in 
the network, c) serviceability-based assessment, 
which considers the impacts on the degradation of the 

network operation, and d) accessibility-based assess-
ment that has similarity with the serviceability and 
more focus on the socioeconomic impacts.  

Moreover, recently the rapidity of the recovery 
process becomes an important topic, which has been 
discussed under the concept of resilience triangle. 
Bevilacqua, Ciarapica, and Marcucci5) developed an 
extended framework of resilience triangle in the sup-
ply chain, which focus on the assessment of supply 
chain performance under disruptions. Li et al.6) used 
resilience triangle to build a resilience framework in 
frequent disaster conditions, where a resilience trian-
gle is extended to a long-term paradigm to take into 
account the impacts of frequency on the system per-
formance. Zobel7) developed a method to analyze and 
visualize the resilience triangle, which takes into ac-
count the two main characteristics of the resilience 
triangle, i.e., the robustness of the system and the ra-
pidity of the recovery. However, these frameworks 
do not really adopt the monetary value of resilience 
improvement, preventing to convey policymakers to 
take actions improving the resilience of transport net-
works. 

Given the above background, this study attempts 
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to identify the impacts of transport network dis-
ruotion on travel demand under the resilience triangle 
concept. We first show a framework that considers 
both the initial impact of disaster and the subsequent 
time to recovery. We propose a simple logsum-based 
network performance measure (also known as acces-
sibility index) obtained from the recursive logit 
model, to quantify the impacts in each point in time. 
This index is computationally efficient, though we do 
not consider the effect of congestion. The index can 
also be used to compute the monetary loss by 
transport network disruption, since the model is con-
sistent with the random utility maximization theory. 
Then, the multilevel regression analysis was con-
ducted to identify the impacts of network disruptions 
on travel demand with the use of Mobile Spatial sta-
tistics data obtained from mobile phone company 
which does not require any direct inputs from the af-
fected people through questionnaire surveys.  

The structure of this paper as follows; next section 
presents a conceptual framework, followed by the 
methods that we used to obtain accessibility index 
and to identify the relationship between the transport 
network disruption and travel demand. We also intro-
duce a way to calculate the monetary loss due to dis-
ruptions. We then introduce data used in this study. 
The following section shows and discusses the re-
sults. Last section will concludes the paper findings, 
policy recommendations, and future prospects. 

 
  

2. FRAMEWORK  
 

The extended framework of resilience triangle 
which proposes to identify the monetary loss by 
transport network disruption is illustrated in Fig. 1. 
There are three stages in the framework. The first 

stage identifies changes in multimodal transport net-
work. The second stage quantify the network perfor-
mance level under disrupted transport network. The 
last stage is to explore the impacts of network perfor-
mance on travel demand. In the last step, we perform 
the multilevel regression analysis to identify the im-
pacts of network disruptions on travel demand and 
quantify the monetary loss. The first two stages are to 
explore the impacts of disaster on the transportation 
supply side, while the last step explores the impacts 
on the demand side, i.e., how the degradation in the 
network performance will affect the socioeconomic 
aspects such as working, education activities, shop-
ping, and vacationing4). 

The key aspect of this proposed framework is in 
the consideration of temporal aspects of network re-
covery: Soon after the road network disruption, the 
network performance would drop to a certain point, 
then, the performance level will increase as roads are 
recovered. At a certain time, the network perfor-
mance will return to its original state (condition be-
fore the disruption). This temporal aspects of recov-
ery has been discussed under the concept of resilience 
triangle in the existing literatures8),9),10),11),12),13). Balal 
et al.10) defined resilience as the ability to respond and 
recover to the previous condition before disruption 
happened. Najarian and Lim15) in their paper, stated 
four abilities of a resilience system, as follows: a) An-
ticipation; phase before anything happens; b) Ab-
sorption; phase when the system absorbs the impact 
of the events/hazards/disasters; c) Adaptation; phase 
after disasters just before the recovery; d) Recovery; 
phase in which gradually return to the initial state15). 
Tierney and Bruneau in Ayyub13) stated the function-
ality of a system could measure the resilience after 
getting shocked to the normal or initial level of per-

 
Fig.1 A resilience triangle to identify the impacts of network disruptions on both supply and demand of transport systems. 
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formance using resilience triangle. The resilience tri-
angle was proposed by Bruneau et al.8) and defined 
into the destruction of function in the incident and re-
covery process16).  

Besides, a comprehensive work that empirically 
identify the impacts of transport network disruption 
on both demand and supply side has not really been 
conducted. One major point would be in measuring 
network performance level and travel demand over 
time efficiently. Various network performance 
measures have been proposed under transport net-
work vulnerability studies4), but repeated applica-
tions of these methods are computationally expensive 
and thus a method that efficiently quantify the perfor-
mance is needed. In this study, we propose to use a 
simple logsum-based network performance measure 
obtained from the recursive logit model. This ap-
proach also allows for quantifying the total monetary 
loss caused by network disruptions. Hence the com-
prehensive assessment on the impacts of disaster on 
both transport supply and demand is becoming pos-
sible. 
 
 
3. METHOD 

 
To quantify the network performance level, we uti-

lize recursive logit model, which proposed by 
Fosgerau et al.17).  Then, a multilevel regression anal-
ysis was conducted to analyze the impact of transport 
network disruptions on travel demand. Brief explana-
tions on these methods are given in the following sub-
sections. 
 
(1) Recursive Logit Model 

The recursive logit model, initially proposed by 
Fosgerau et al.17), is known as a dynamic discrete 
choice model, where the traveler’s path choice prob-
lem is represented by a series of link choice problems 
on a network through Bellman equation. In their pa-
per, it is proved that the recursive logit model is con-
sistent with a multinomial logit model with infinite 
choice set. One very nice aspect of the model is in the 
efficient calculation of the logsum measures. Mai et 
al.18) proposes an efficient way to calculate logsum 
values, which all logsum values can be obtained 
through one inverse matrix calculation. This allows 
us to efficiently compute logsum values under vari-
ous network disruption patterns. In the empirical 
analysis, values cost and time parameters are adopted 
from Oka et al.19), where these parameters are esti-
mated by using Freight vehicle GPS trajectory data. 

  
(2) Multilevel Regression Analysis 

To identify the relationship between transport net-
work disruption and travel demand (the log of total 

OD trips), we develop a multilevel regression model, 
where we introduce four random terms varying 
across (1) dates, (2) destinations, (3) origins, and (4) 
the ID which showing combinations of origins and 
destinations. These random terms are introduced to 
efficiently control unobserved factors affecting the 
travel demand. Explanatory variables include (1) the 
logsum value obtained from recursive logit model, 
(2) the completely destroy (house damage) in desti-
nation and origin information, (3) floor flooded 
(house damage) in destination nad origin infor-
mation, (6) weekdays dummy, i.e., 1 if Monday-Fri-
day and 0 otherwise, (7) active time dummy, i.e., 1 if 
05.00-21.00 and 0 otherwise. The damage of the dis-
aster was obtained from several reports from the 
city’s Government, that is Higashi-hiroshima20), Hi-
roshima21), Aki District22), and Kure23).  

 
(3) Monetary loss from the network disruption 

Since the reduction of the logsum due to disaster 
can be directly used to calculate the additional cost 
people have to pay for travel for each OD pair, and 
the travel demand for each OD pair can be obtained 
from Mobile Spatial Statistics (which will be ex-
plained in the next section), we can straightforwardly 
obtain the monetary loss from the transport network 
disruption. In this the empirical analysis, we calculate 
the monetary loss for each OD pairs in the study area 
and find out which connectivity that has the worst 
monetary loss. First, we calculate the generalized 
cost, which shows the loss of money for one trip can-
celed. We then calculate the monetary loss by taking 
multiplication of the average number of trips before 
disaster and the changes in generalized cost for each 
OD pair. 
 
 
4. DATA 
 

The study of this research is in Hiroshima Prefec-
ture, which focused on the road network of Hiro-
shima, Higashi-hiroshima, Kure, and Aki District. 
Data that we used in this study covers the mobile spa-
tial statistics data and transport network data. Both 
data were taken in the same period in the research 
area. The mobile spatial statistic data were obtained 
from Docomo InsightMarketing Inc.  This data co-
vers not the road users only, but also users of all other 
modes. The network data consist of a map showing 
the network which has the information of link name 
and node. The list of the area can be seen in Table 1. 
In this research, we only consider 24 areas excluding 
area numbers 5, 11, and 25 since a large number of 
data are omitted from the data due to the privacy pol-
icy of Docomo InsightMarketing Inc. 
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Looking at he network data, the closure infor-
mation was provided from the day when the disaster 
happened until 3,418 hours after the disaster hap-
pened, which indicates that the network was fully re-
covered within four and half months. In the normal 
condition, the network has 86 links and its connecting 
27 nodes/area (Fig. 2(a)). As shown in the Table 1 for 
the ID area of the network data, Kure city, which has 
ID of 1-7, only has several links that connecting the 
area in intra city network (Fig. 2(b)). Moreover, the 

connectivity to the area outside of Kure city is very 
limited. Then, the recovery process began and the 
broken links were recovered over time. Three days 
after disaster (Fig. 2(c)), Kure city began to have ac-
cess to other cities, even though the access was very 
limited. Fig. 2(d) and (e) showing the condition 7 
days/one week and two weeks after the disaster hap-
pened. Herein, Kure city has more access to connect 
to other cities and connect to the area in intra-city. 
One month after the disaster (Fig. 2(f)), 73 links were 
recovered, and only 13 links were under recovery 
process. 

 
 

Table 1  List of the Network Data Area 

ID Area City 

1 Kure/Chuo Kure 

2 Tennou Kure 

3 Yakeyama Kure 

4 Hiro Kure 

5 Gohara Kure 

6 Ondo Kure 

7 Yasuura Kure 

8 Takaya Higashi-hiroshima 

9 Saijo Higashi-hiroshima 

10 Hachihonmatsu Higashi-hiroshima 

11 Shiwa Higashi-hiroshima 

12 Kurose Higashi-hiroshima 

13 Toyosaka.Fuku-

tomi.Kawauchi 

Higashi-hiroshima 

14 Akitsu Higashi-hiroshima 

15 Fuchu Aki District 

16 Kaita Aki District 

17 Kumano Aki District 

18 Saka Aki District 

19 Naka ward Hiroshima 

20 Higashi ward Hiroshima 

21 Minami ward Hiroshima 

22 Nishi ward Hiroshima 

23 AsaMinami 

ward 

Hiroshima 

24 Asa Kita ward Hiroshima 

25 Nakano  Hiroshima 

26 Yano Hiroshima 

27 Saiki Hiroshima 
 

 
(a) 

 

 
(b) 

 

 
(c) 
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5. RESULTS AND DISCUSSION 
 
(1) Accessibility Index 

The accessibility index refers to the logsum-based 
network performance measure obtained from recur-
sive logit model. For the network development, we 
represent a road network as a directed graph. We 
compute the accessibility index repeatedly whenever 
a part of transport network was recovered over time.  

Fig. 3(a) shows the accessibility index for each 
pair when no disruption occurs. The light color in the 
matrix showing the lower accessibility index, and the 

 
(d) 

 

 
(e) 

 

 
(f) 

 
Fig.2 Network in the normal condition (before the disaster 
happened) (a), soon after disaster happened (b), 3 days after 
disaster (c), 7 days after disaster (d), 2 weeks after disaster (e), 
and 1 month after disaster (f). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

第 62 回土木計画学研究発表会・講演集



 

 6 

dark color showing the high accessibility index. In 
this condition, all links are accessible. Fig. 3(b) 
shows the situation soon after the disaster, where 
only 35 links out of 85 were available. We can con-
firm that several destinations are not accessible 
(white color in the figure) mostly located in Kure 
city. The accessibility index itself had improved over 
time due to the progress in network recovery. Fig. 
3(c) shows the accessibility index in 7 and 14 are still 
lower even three days after the disaster. Destinations 
7 and 14 are Yasuura (7) and Akitsu (14), and we can 
confirm that it is because less routes are available to 
these destinations (Fig. 2(c)). The connection be-
tween location 14, which dependent on location 7, 
went on for 172 hours (7 days) after the disaster. 
Here, it can be seen that location 14 was very depend-
ent on its connection to location 7. From Fig. 3(d) and 
Fig. 3(e), we can confirm that the accessibility index 
are almost recovered within one month after the dis-
aster.  
 
 
 (2) Impacts of accessibility loss on Travel De-
mand 

 
Table 2 shows the estimation results of multilevel 

regression model, where the unit of analysis is 
hourly. The results of the marginal R-square show the 
variance of fixed effects, while the conditional R-
square provides for the overall model (fixed and ran-
dom effects)24). The results indicate that the travel de-
mand would increase if the value of accessibility in-
dex increase. In case of the severity of the house dam-
age, the completely destroyed for both origin and 
destination will directly affect the travel demand, 
which means that if the house damage were getting 
severe, the travel demand would decrease. Besides, 

we also confirm that the impact of the flood, week-
days, and time will not affect the travel demand. 

 
 (3) Monetary loss by road network disruption 

 
We also compute the monetary loss for all 24 × 24 

origin destination pairs. Note that the monetary loss 
calculated here is the loss of money due to the in-
crease in travel time, not the reduction of travel time. 
We decided to calculate the monetary loss from the 
supply side perspective, since as we confirmed in the 
previous section, travel demand can sometimes in-
crease due to recovery activities and so forth and thus 
losses calculated from the demand side information 
may not be very much stable.  

The differences in generalized cost before and af-
ter disaster can be directly used to quantify the cost 
of additional travel time. At the OD pair level, the to-
tal loss of money per trip ranges from 0 to 3,712 yen. 
The largest value of the reduction in generalized cost 
is in the pair of Saka and Aki ward. We then calculate 
the total monetary loss by taking multiplication of the 
average number of trips before disaster and the 
changes in generalized cost for each OD pair. The re-
sults are shown in Fig. 4, which could be idenfitied 
that the monetary loss was decrease over time since 
the recovery was conducted. Dark color indicates the 
lowest monetary loss and light color show higher 
monetary loss. Meanwhile, white color in the matrix 
show the monetary loss per day greater than one mil-
lion yen. The highest monetary loss in this condition 
is pair between Asa Minami Ward (23) to Naka ward 
(19). Both of them are located in Hiroshima city. If 
we look at the reduction in number of trips based on 
trip generation and attraction, the highest monetary 
loss also corresponds to this, where Asa Minami 
ward shows the largest trip reduction for trip genera-
tion and Naka ward shows the largest trip reduction 
for trip attraction. Fig. 4(c) shows that the monetary 
loss was decreased and only one area that has mone-
tary loss greater than one million yen (Saijo (9) and 
Akitsu (14)). This loss happened due to the closest 
link which connecting those areas. 

The monetary loss can also been shown using re-
silience triangle to understand rapidity of the recov-
ery and the severity of the impacts. We exemplify the 
monetary loss over time in 4 distinct OD pairs. One 
of the most affected areas is Tenno, Kure25). Herein, 
we looked at the monetary loss to Tenno from the 
center of Hiroshima city, i.e., Naka Ward. Also, we 
looked at the monetary loss from Saijo to Akitsu (Hi-
gashi-hiroshima), where the recovery of the road con-
necting these two areas took a longer time than the 
others. The connectivity between these areas can be 
confirmed in Fig. 4. Two weeks after disruption, the 
link between node 9 (Saijo) and 14 (Akitsu) is still 

 
(e) 

 
Fig.3 Accessibility Index Matrix Before Disaster Happened 
(a), soon after disaster (b), 3 days after disaster (c), 7 days af-
ter disaster (d), and 1 month after disaster (e). 
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not available. A similar situation happened in node 2 
(Tenno) and node 3 (Yakeyama). The links that di-
rectly connect between these areas was not available 
even one month after the disaster happened. Further, 
we also look at the monetary loss changes over time 
in the connectivity between Hiro (Kure) and Kurose 
(Higashihiroshima), which have the biggest total 
monetary loss. 

In the comparison, the monetary loss between 
Naka ward and Tenno decreased rapidly, but it takes 
a long time to reach zero. Meanwhile Saijo-Akitsu 
and Hiro-Kurose decrease slowly and relatively 
faster to reach zero. Tenno-Yakeyama decreases 
slowly and has a tardy graph of monetary loss. It be-
cause the link that directly connects these two areas 
was broken for a long time. Later, the monetary loss 
reaches zero in November 26, 2018 or when all links 
was recovered. This indicate that, although in mass 
medias the connection between Tenno-Yakeyama 
was not really highlighted compared to the connec-
tion between Naka ward-Tenno, the cumulative im-
pacts can be get higher due to the tardy recovery. 
Identifying it might be useful to consider the optimal 
order of recovery process, since the marginal benefits 
from the network recovery getting smaller and 
smaller as the network is recovered. The total of all 
monetary loss for all pairs shows that the monetary 
loss is nearly 6 billion yen, and might higher after 
consider the congestion. Even though still it would 
give policymakers to have an intuitive understanding 
on the loss we had during the disaster. 
 
 

 

 
 

Table 2  Multilevel Regression Results 
 β t value  

Fixed effects    
Intercept 3.0875 16.5120 *** 
Accessibility index 0.0151 20.8060 *** 
Completely destroyed in destination -0.0041 -1.6060  
Completely destroyed in origin -0.0041 -1.6080  
Floor flooded in destination 0.0004 0.3780  
Floor flooded in origin 0.0003 0.3180  
Weekdays 0.1506 5.8030 *** 
Active Time 1.3561 479.7110 *** 

Random effects (Variance)    
Origin-Destination 1.4169   
Date 0.0121   
Destination 0.2138   
Origin 0.2206   
Residual 0.4923   

Marginal R-square 0.0990   

Conditional R-square 0.8120   

Final log-likelihood -617,554   
Number of observations 577,923   

 
(a) 

 

 
(b) 
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6. CONCLUSION 
 

This research identified the impacts of transport 
network disruptions on the travel demand with par-
ticular focus on July 2018 heavy rain disaster hap-
pened in the Hiroshima Area, resulting in a massive 
transportation network disruptions. Particularly, we 
first introduced a resilience concept to reflect the re-
covery process of transport network over time. We 

then proposed a simple logsum-based network per-
formance measure (also known as accessibility in-
dex) obtained from the recursive logit model. Alt-
hough this index does not consider the effects of traf-
fic congestions, it is computationally efficient and 
monetary loss caused by transport network disrup-
tions can be calculated since the model is consistent 
with the random utility maximization theory. We 
then conduct the multilevel regression analysis to 
identify the impacts of network disruptions on travel 
demand by using Mobile Spatial Statistics data ob-
tained from a mobile phone company. The results 
show that the accessibility will have the direct impact 
on travel demand. Moreover, the network disruptions 
significantly reduce travel demand, and show that the 
total monetary loss is at least 5.7 billion JPY, which 
might higher after considering the traffic conges-
tions. The results also show that, for some of the dis-
ruptions, the impacts are modest but the total loss is 
getting larger due to tardy recovery. This indicates 
that putting the higher priorities to the recovery of 
main transport corridors is not always a better option, 
since the marginal benefits would be smaller and 
smaller as the network is recovered. These results 
would help policymakers to facilitate the recovery 
process of disrupted transport networks. 

Though significance is aimed, this research also 
have limitations. First, in the analysis of the impacts 
using multilevel regression, the dependent variable 
(number of trips), a number of trips would actually be 
recovery activities. Actually, exploring transporta-
tion demand during disaster is still not very much 
elaborated, and more empirical analysis is needed to 
improve our current understanding. Second, our cur-
rent accessibility index does not take into account 
traffic congestions, which could be simply solved by 
using real time travel time information for example 
from GPS trajectories. 
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