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This study compares the predictive accuracy of apartment rent price in Japan between the nearest neighbor Gaussian 
processes (NNGP) model, which enables application of Kriging to big data, and the deep neural network (DNN), a 
representative machine learning technique, with a particular focus on the data sample size (n = 104, 105, 106) and 
differences in predictive performance. Our analysis showed that, with an increase in sample size, the out-of-sample 
predictive accuracy of DNN approached that of NNGP and they were nearly equal on the order of n = 106. Furthermore, 
it is suggested that, for both higher and lower end properties whose rent price deviates from the median, DNN may 
have a higher predictive accuracy than that of NNGP. 
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1. Introduction 

 

Real estate is an industry that has been said to relatively lag behind 

other businesses in terms of digitalization. During recent years, how-

ever, efforts to streamline operations using technologies have been 

gaining momentum. Online automated services for property price es-

timation is a recent technology and Zillow , a service offered by Zillow 

Group in the US, is well known. Likewise, in Japan, there is a service 

termed Price Map  from LIFULL. In Price Map, for example, proper-

ties are represented on a map with which one can review reference sale 

and monthly rent prices by entering information such as room layout 

and lot size. Other similar services also exist and they are typically sup-

ported by huge property databases and statistics- or machine-learning- 

based sale and rent price prediction technologies. These technologies 

have been termed as big data analysis or AI (artificial intelligence) dur-

ing recent years, and they are making rapid progress. As exemplified 

by the term ReTech (Real Estate Tech), this has undoubtedly signifi-

cantly impacted the real estate industry. 

Behind the increase in automated price assessment and prediction 

technologies using big data is the inefficiency of the current real estate 

industry. For example, in Japan, licensed real estate appraisers provide 

a property assessment based on an expected cash flows and compari-

son with similar properties. However, because all real estate properties 

have a uniqueness in the sense that there are no two identical properties 

and because an appraisal must be conducted considering the sup-

ply/demand balance, in addition to the property characteristics them-

selves, a tremendous effort must be made in explaining for the basis 

for the appraisal to consumers. Aside from appraisal costs, there is an 

issue of information asymmetry between real estate agencies and gen-

eral consumers as seen in the limited disclosure of purchase prices be-

cause of privacy policy . This means that if real estate sale or rent prices 

can be reasonably and quickly predicted, then the information asym-

metry between consumers and real estate agencies would disappear, 

leading to revitalization of the real-estate market. In other words, there 

is a need for an accurate prediction model of real estate sale and rent 

prices for businesses and consumers.  

While attention has been drawn to automated assessment of real-

estate sale and rent prices using big data and machine learning tech-

niques (Abidoye and Chan, 2017), conventionally, the hedonic ap-

proach has been widely used for predicting real estate sale and rent 

prices (Rosen, 1974). The hedonic approach takes the real estate sale 

or rent price to be a sum total of the values of attributes that comprise a 

property and typically estimates its price through regression analysis. 
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Because it is an approach based on regression analysis, it can be im-

plemented with relative ease and more importantly, marginal benefits 

of attributes can be evaluated using a calculated regression coefficient 

as a by-product. Meanwhile, from the perspective of prediction, sim-

ple functional forms such as logarithmic form or Box-Cox form are 

typically used . Thus, in a context where the sample size is sufficiently 

large, the big data plus machine learning approach, which can con-

struct complex non-linear functions, is expected to outperform its al-

ternatives. Indeed, as mentioned in the next section, several studies 

show this trend.  

For real estate appraisal, there are factors that are difficult to accom-

modate as explanatory variables such as local brand and historical con-

text. It is therefore important to consider how these unobserved factors 

can be incorporated into the model. In spatial statistics, a method of 

handling these variables as the spatial dependence of error terms 

(neighboring properties are prone to a similar error), more strictly, a 

method of capturing spatial dependence by assuming a Gaussian pro-

cess (GP), was established as Kriging (Dubin, 1988). To name only a 

few, James et al. (2005), Bourassa et al. (2010), and Seya et al. (2011) 

have reported that Kriging provides high predictive accuracy com-

pared to simple multiple regression models (hereinafter referred to as 

ordinary least squares (OLS)) in property field. Because model struc-

ture of OLS is rather simple, parameters can be properly set even with 

a relatively small sample size and there are no many benefits in using 

big data. By contrast, with Kriging, because pricing information of 

neighboring properties is reflected in the predicted results through spa-

tial dependence, the situation is different from that of OLS.  

As previously noted, because the regression-based model can be 

used for evaluation, it is of high practical use particularly in the social 

sciences. It is therefore important to test the extent to which its predic-

tive accuracy differs from that of the machine learning approach and 

understand the order.  Thus, the aim of this study was to compare and 

discuss the results of rent price prediction using three different ap-

proaches—the [1] OLS, [2] spatial statistical (Kriging), and [3] ma-

chine learning approaches—for various sample sizes. As the sample 

size increases, it is increasingly more difficult to straightforwardly ap-

ply Kriging which requires the cost of O(n3) for inverting a variance–

covariance matrix (for example, when n = 105). Hence as a spatial sta-

tistical approach, the nearest neighbor Gaussian processes (NNGP) 

model was used, which allows application of Kriging to big data 

(Datta et al., 2016; Finley et al., 2017; Zhang et al., 2019). While there 

are various approaches for spatial statistical modeling using big data, 

NNGP has been demonstrated to have better predictive accuracy and 

practicality in a comparative study (Heaton et al., 2018). 

As a machine learning approach, the deep neural network (DNN) 

was used. Neural networks including the DNN are mathematical 

models of the information processing mechanism in the brain com-

posed of billions of neurons; multi-layered neural networks are termed 

the DNN. The DNN can construct highly complicated non-linear 

functions and can consider spatial dependence through a non-linear 

function for position coordinates without explicitly modeling the spa-

tial dependence as in the spatial statistical approach (e.g., Cressie and 

Wikle, 2011).  

For validation, “LIFULL HOME'S Data Set” , a data set for 

monthly residential apartment rent prices in Japan provided by 

LIFULL Co., Ltd. free of cost through the National Institute of Infor-

matics, to researchers, was used. Because there is generally less re-

search regarding rental price than that regarding sales price, it may be 

a valuable data set. The data set consists of snapshots (cross-section 

data) that are either rental property data or image data as of September 

2015. The former shows rent, lot size, location (municipality, zip code, 

nearest station, and walk time to nearest station), year built, room lay-

out, building structure, and equipment for 5.33 million properties 

throughout Japan whereas the latter is comprised of 83 million pictures 

that show the floor plan and interior details for each property. In this 

study, only the former was used. One of our future tasks is to perform 

an experiment using the latter. 

Out of approximately 5.33 million properties, 4,588,632 properties 

were obtained after excluding missing data, from which n = 104，105, 

and 106  properties were randomly sampled. While focusing on the dif-

ference in sample size, the accuracies of out-of-sample prediction for 

property rent price based on approaches [1], [2], and [3] were com-

pared through validation. The number of explanatory variables K was 

43 including constant terms. Our analysis showed that with an increase 

in sample size, the predictive accuracy of DNN was observed to ap-

proach that of NNGP and on the order of n = 106 they were nearly 

equal. During this experiment, standard explanatory variables that had 

been incorporated into the regression-based hedonic model were used. 

Our findings suggested that, using these standard settings, even if the 

sample size is on the order of n = 106, the use of regression-based 

NNGP is sufficient.  

In section 2, we briefly review previous studies regarding related 

issues. Section 3 briefly explains models used in this comparison study. 

Section 4 shows the results of the comparative analysis using the 

LIFULL HOME'S data set. Lastly, section 5 presents conclusions and 

provides future challenges to address. 

 

2. Literature review 

 

This section offers a review of previous studies that compared the 

regression-based approach and the neural-network-based approach in 

terms of prediction of real estate sale and rent prices. Against, perhaps, 

readers’ anticipation, relatively limited research is available on this 

topic.  

Kontrimas and Verikas (2011) compared the predictive accuracy 
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of the machine-learning approach including multi-layer perceptron 

(MLP), a subset of DNN, and OLS using data on home sale transac-

tions. They found that the mean absolute percentage difference 

(MAPD) for MLP and OLS was 23% and 15%, respectively, and 

MLP was outperformed by OLS. However, the sample size of their 

study was no greater than 100. Similarly, Georgiadis (2018) compared 

the predictive accuracies of regression-based models and Artificial 

Neural Networks (ANN) on sales prices of 752 apartments in Thessa-

loniki, Greece, using cross valuation and found that the geographically 

weighted regression model (Fotheringham et al., 2002) outperformed 

ANN. While these two studies have shown that the regression-based 

approach outperformed the neural-network-based approach in terms 

of predictive accuracy, the sample sizes used for these studies were 

merely on the order of n = 102.  

Meanwhile, Abidoye and Chan (2018) compared ANN and OLS 

using sales transaction data for 321 residential properties in Lagos, Ni-

geria, and concluded that ANN outperformed OLS. Likewise, Yalpır 

(2018) and Selim (2009) compared ANN and OLS and suggested that 

the former performed better. Yalpır (2018) used 98 study samples, 

whereas Selim (2009) used fairly large—5741 samples. In Yalpır 

(2018), they used three activation functions (the sigmoid, tangent hy-

perbolic, and adaptive activation functions) to build ANN. However, 

hyperparameters other than activation functions were fixed in valida-

tion.  

As previously discussed, although several attempts have been 

made to compare and examine the predictive accuracy of real estate 

sale and rent prices between a regression-based approach and a neural-

network-based approach, the results obtained were largely mixed. 

Limitations of previous studies include [1] a small sample size (except 

for Selim (2009)), [2] disregard of spatial dependence which is an es-

sential characteristic of real-estate properties (except for Georgiadis 

(2018)), and [3] tailored and ad hoc settings of hyperparameters in 

DNN (or ANN). To address these challenges, the present study at-

tempted to [1] perform an experiment at different and relatively large-

scale sample sizes (n = 104, 105, 106), [2] consider the spatial depend-

ence either the application of NNGP (Kriging) or the function of lati-

tude/longitude coordinates (in case of DNN), and [3] optimize hy-

perparameters in DNN. 

 

3.  Model 

 

                                                           
1 Or	 , see Cressie (1993). 

(1)  Nearest Neighbor Gaussian Processes (NNGP) 

Let D be the spatial domain under study and let  be a coordi-

nate position (x, y coordinates). Then, the spatial regression model, 

often termed as the spatial process model, can be expressed as fol-

lows: 

  , ~ 0,  (1) 

where  is a variance parameter termed a nugget that represents 

micro scale variation and/or measurement error. Normally, we as-

sume that	 ，where x is an explanatory param-

eter vector at the point s and  is the corresponding regression co-

efficient vector. 	  is assumed to follow the Gaussian process 

(GP) w ~ 0, ∙,∙ | , where the mean is zero and the 

covariance function is	 ∙,∙ |  (  is a parameter vector that nor-

mally includes the parameter  [where 1/  is called the range], 

which controls the range of spatial dependence, and the variance 

parameter , which represents the variance of spatial process and 

termed partial sill). If a sample is obtained at point s1, …, sn, w

, , … ,  follows the multivariate Gauss-

ian distribution：w~N(0,	 ), where the mean is zero and the 

covariance function is C(si, sj| ). Then the spatial regression 

model can be expressed as y~N(X , , ), where 

,  with I is an n n identity matrix. If the 

following relationship holds for any movement ∈ , w(s) is 

considered a second-order stationarity spatial process. 

  0; ∀ ∈ , (2) 

  , | ; 	∀ , ∈ , (3) 

 , | ;		

  ∀ , ∈ .  (4) 

The second-order stationarity assumes that the covariance does not 

depend on position s and only on h. When h depends only on the 

distance || || and not the direction, the spatial process is 

said to have isotropy (||・|| is the vector norm). Covariance func-

tions C(si, sj| ) that meet second-order stationarity can be spherical, 

Gaussian, exponential, Matérn, etc. (Cressie, 1993).  

The prediction of  at any given point  is termed Kriging1. 
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The Kriging predictor includes the n n variance-covariance ma-

trix C with elements represented by C(si, sj| ) and the calculation 

requires the cost of O(n3). The calculation will be difficult when n 

takes the value around n = 105. By contrast, various approaches 

have been proposed that approximate the spatial process w(s) 

(Heaton et al., 2018). Among other alternatives, this study used 

the NNGP model. NNGP is based on Vecchia (1988) and as-

sumes the following approximation to the joint likelihood 

	
∏ | , … , . 2  

 ∏ | . (5) 

Here,  is a neighbors set of , and it is given as the k-nearest 

neighbors of  in NNGP. Thus, NNGP approximates the full GP 

expressed as a joint distribution using the nearest neighbors. Datta et 

al. (2016) demonstrated that the approximation of formula (5) leads 

to approximation of the precision matrix  to  provided in 

the following formula:  

 ′  (6) 

where A is a sparse lower triangular matrix with at most k-entries in 

each row and D = diag(dii) is a diagonal matrix. Here, because A and 

D can be provided as m m matrices, it can significantly reduce the 

computational load. The spatial regression model provided through 

NNGP may be written as follows: 

 y~N(X , , ) (7) 

where , . 

The NNGP model parameters can be estimated using 

(Bayesian) Markov Chain Monte Carlo (MCMC) (Datta et al., 

2016), Hamiltonian Monte Carlo (Wang et al., 2018), and maxi-

mum likelihood methods (Saha and Datta, 2018). This study uses 

MCMC. Because the NNGP parameters are  and 

, , ′ , ′, when using MCMC, we need to set a 

prior distribution for each parameter and multiply it by the likelihood 

function to obtain conditional posterior distributions (full Bayesian 

NNGP). Because this study addresses massive data up to a maxi-

mum of n = 106, it is difficult to implement the full Bayesian NNGP 

within a practical computational time. Accordingly, conjugate 

NNGP as proposed by Finley et al. (2017) was used. Suppose 

 is a nearest neighbors approximation of a correlational matrix 

corresponding to a nearest neighbors approximation of a variance-

                                                           
2 Although the results depend on the ordering of the samples, Datta et al. 
(2016) showed that NNGP is insensitive to ordering. We performed ordering 

covariance matrix— . Then the conjugate NNGP can be pro-

vided as follows: 

 y~N(X , ) (8) 

where	 	 		and		 / . The point of us-

ing the conjugate NNGP is that, when assuming that 	and	  are 

known, the conjugate normal-inverse Gamma posterior distribution 

for  and  can be used and the predictive distribution for y( ) 

can also be obtained as a t-distribution; thus, it is extremely easy to 

perform sampling.  

 

(2)  Deep neural network (DNN) 

DNN is inspired by organism’s neural networks. It is a math-

ematical model that has a network structure in which layered units 

are connected with neighboring layers. DNN allows construction 

of extremely complicated non-linear functions. What follows is a 

schematic diagram of a standard three-layered DNN created in 

reference to Raju et al. (2011):  

 

Figure 1: Three-layered feedforward neural network  

(Created by authors in reference to Raju et al. (2011)) 

 

Each element that comprises a network is termed a unit or node and 

is represented as O (circle) in Figure 1. The first layer is termed the 

input layer and the last the output; all of the other layers are referred 

to as hidden layers. In DNNs, results of non-linear transformations 

on inputs received from the previous layer are transmitted to the 

next layer to ultimately derive a single output as an estimation result. 

In doing so, linear transformations via a weighted matrix  

( 	 ) and non-linear transformations via an activa-

tion function f(.) occur in each layer. The transformation from 

the lth layer output zl ( 	 1) to the l + 1th layer output zl+1 

( 	 1) can be computed according to the following 

formulas:  

		 	 	, 9  

	 . 10  

based on the x-coordinate locations. 
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where b is a bias term. Suppose the number of layers is expressed 

as l = 1, …, L, output  in the Lth layer is the final output ( ≡

. f(.) is a non-linear function termed an activation function. Typi-

cal activation functions include the sigmoid and Rectified Linear 

Unit, Rectifier (ReLU) functions; the latter was used in this study. 

Any differentiable function can be used for the loss function of a 

DNN. If regression is used as in this study, the Mean Squared Error 

(MSE) of the actual value  and the predictive value  is often used.  

1
11  

For the loss function h, searching W and b that minimize h is termed 

DNN learning. Learning is performed by the gradient algorithm, 

while backpropagation is used to calculate the gradient. In contrast 

to the case of estimation, partial derivatives are computed in order 

from the output layer (LeCun et al., 2011). 

 

4.  Comparison experiments: Kriging versus DNN 

(1)  Dataset 

As previously mentioned in section 1, the LIFULL 

HOME’S data set was used in this study for rent price prediction. Out 

of approximately 5.33 million properties, 4,588,632 properties ob-

tained by excluding missing data were used as original data. Alt-

hough the original data did not explicitly contain property positional 

coordinates s, they did contain zip codes and barycentric coordinates 

for zip codes (X,Y coordinates of a WGS84 UTM54N type) were 

used on their behalf. This led to inclusion of some positional errors in 

the positional coordinates. However, given that our study was nation-

wide in scope, these errors are ignorable. We do not consider the in-

stability of functional with respect to the study area (i.e., market), 

though such instability may be partially considered by the modelling 

of spatial dependence. 

The dependent variable is the natural logarithm of the 

monthly rent price (yen, including maintenance fees)) the explana-

tory variables shown in Table 1 were used. We selected typical vari-

ables to include descriptors of the location of the house (location var-

                                                           
3 http://nlftp.mlit.go.jp/ksj-e/index.html 
4 For building structure: W: Wooden; B: Concrete block; S: Steel frame; RC: 
Reinforced concrete; SRC: Steel frame reinforced concrete; PC: precast con-
crete; HPC: Hard precast concrete; LS: Light steel, RCB: Reinforced concrete 
block 
For room layout: The R refers to a room where there is only one room and 
there is no wall to separate the bedroom from the kitchen. For the others, K: in-

iables), descriptors of the house itself (structural variables), and de-

scriptors of the neighborhood (neighborhood variables) (see Dubin, 

1988). The number of explanatory variables (K) was 43. Table 1 also 

shows descriptive statistics. Although the classification of room layout in 

Table 1 could be more fine-grained, we used a slightly coarse classifica-

tion because we were more interested in comparing models. Of all the 

explanatory variables, information regarding use district (zoning) and 

floor-area ratio was often lacking in the original database. Therefore, these 

data were separately prepared from the National Land Numerical Infor-

mation3. Figure 2 shows the number of properties per 1000 km2 and 

Figure 3 shows the natural logarithm of the rent price (yen) for each 

prefecture.  

Table 1-1: Descriptive statistics (Continuous variables) 

 
Table 1-2: List of explanatory variables (Discrete variables)4 

 
Table 1-3: Descriptive statistics (Discrete variables)  

 

cludes a kitchen; D: includes a dining room: L: includes a living room; S: addi-
tional storage room. For example, LDK is a Living, Dining, and Kitchen area.  
For use district: Category I exclusively low residential zone, Category II exclu-
sively low residential zone, Category I exclusively medium-high residential 
zone, Category II exclusively medium-high residential zone, Category I resi-
dential zone, Category II residential zone, Quasi-residential zone, Neighbor-
hood commercial zone, Commercial zone, Quasi-industrial zone, Industrial 
zone, Exclusively industrial zone 

 Min Max Median Mean SD 

log(rent price) (yen) 8.57 20.9 11.1 11.1 0.402 

Years built (month) 5 1812 228 236 135.6 

Walk time to nearest (train) station (m) 1 88000 640 781.5 661.3 

Number of rooms (#) 1 50 1 1.48 0.71 

Floor-area ratio (%) 50 1000 200 234.1 130.6 

X (km) -841 783.1 352.2 181.5 273.3 

Y (km) 2958 5029 3931 3942 195.3 

 

Direction North, Northeast, East, Southeast, South, Southwest, West, Northwest, 

Other 

Building 

structure 

W，B，S，RC，SRC，PC，HPC， 

LS，ALC，RCB，Others 

Room layout R, K, SK, DK, SDK, LK, SLK, LDK, SLDK 

 

 

Use district 

Category � exclusively low residential zone (1 Exc Low), Category II 

exclusively low residential zone (2 Exc Low),  Category � exclusively 

high-medium residential zone (1 Exc Med), Category II exclusively high-

medium residential zone (2 Exc Med), Category I residential zone (1 Res), 

Category II residential zone (2 Res), Quasi-residential zone (Quasi-Res), 

Neighborhood commercial zone (Neighborhood Comm), Commercial zone 

 

Direction Structure Use district Room layou

North 156843 W 1024081 1 Exc Low 780638 R 423

Northeast 81173 B 570 2 Exc Low 25793 K 1729

East 595252 S 844184 1 Exc Med 689879 SK 69

Southeast 473041 RC 1892428 2 Exc Med 321441 DK 890

South 1749315 SRC 190048 1 Res 1030319 SDK 51

Southwest 458125 PC 11924 2 Res 211076 LK 51

West 404994 HPS 802 Quasi-Res 59863 SLK 13

Northwest 78836 LS 559974 Neighborhood Comm 386531 LDK 1505

Others 591053 ALC 58373 Commercial 615630 SLDK 258

  

RCB 597 Quasi-Ind 371672   

Others 5651 Industrial 83826   

  Exc Ind 11949   

  Others 15   
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Figure 2: Number of properties per 1000 km2 for each prefecture  

 

 
Figure 3: log (rent price) for each prefecture 

 

(2)  Experimental design 

We compared the rent prediction accuracy based on three models: 

OLS, NNGP, and DNN. For prediction, of 4,588,632 properties, prop-

erties were randomly selected at various sizes (n =104, 105, 106) and 80% 

of these data were used as training data for models for learning and the 

remaining 20% were used as testing data (validation data) to test the pre-

diction accuracy. The sample size for training and testing data had three 

patterns: (8000 vs. 2000), (80,000 vs. 20,000), and (800,000 vs. 

200,000). Because sampling was completely randomly conducted, 

there were no containment relations such that, for example, 104 samples 

are contained in 105 samples. However, because the data size was suffi-

ciently big, it would be highly unlikely that the sample bias would con-

ceal trends, and thus this study design (based not on conditionalization 

but on complete random sampling) would not greatly affect results.  

For predictive accuracy assessment, the following error measures 

were used. Here, i, yi  are the out-of-sample predictive and observed val-

ues, respectively, for the ith data.  

	 	
1

| 	 	 | 	 12  

	 	
1

	 13  

	 	
1

	 	 14  

	 	
100 	 	

	 15  

 

(3)  Model settings 

(a) OLS 

OLS was added for comparison as a usual hedonic regression 

model that does not consider spatial dependence. The explanatory 

variables are shown in Table 1 save the X and Y coordinates. As a 

reference, Table 2 shows regression analysis results based on the 

OLS estimation when n = 106. The adjusted R2 value was 0.5178 

and fairly good given the sample size.  
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Table 2: Regression analysis results using OLS (example of n = 106) 

 

 

(b) NNGP  

We used the conjugate NNGP proposed by Finley et al. 

(2017) as explained in Section 3.1. The conjugate NNGP is a prag-

matic approach that accelerates sampling by assuming 	and	  

to be “known.” Needless to say, the full Bayesian NNGP is theo-

retically sound. In this study, however, we addressed massive data 

with up to n = 106 of data; hence, it is practically difficult to imple-

ment full Bayesian NNGP. In cases such as this, the conjugate 

NNGP offers a very useful alternative. Finley et al. (2017) pro-

posed to assign values to 	and	  via the grid point search algo-

rithm based on the cross-validation (CV) score. However, the com-

putational load is high for performing a grid point search for n = 106 

of data. Therefore, in this study, the following simplified procedure 

was undertaken in assigning values to	 	and	 5. From the re-

maining data that were not used for comparison in this study, 

                                                           
5 One possible means to improve this is to apply the methods of hyper parame-
ters value setting for the DNN as mentioned in the next section. For the devel-
opment of a concrete algorithm, we are leaving it for future study.  

10,000 properties were randomly sampled and parameters were 

defined by iteratively re-weighted generalized least squares 

(Schabenberger and Gotway, 2005, pp. 256–259) in the semivari-

ogram	 , which is in converse relation to 

the covariance function. Figure 4 shows the fitting results. Starting 

from the left, the Gaussian, spherical, and exponential models are 

shown. Of these, the Gaussian model had the best CV score, and 

hence, was used. We can see that the Gaussian model is a particu-

larly good fit to near-distance that is subject to prediction results. 

Given these observations, the value for each parameter was as fol-

lows: ϕ=1/25.8, τ 2 = 0.04, and σ2 = 0.03. 

 

 
Figure 4: Fitting of variogram functions 

(Gaussian model; Spherical model; Exponential model) 

 

As a next step, the model parameters thus created 

were used to develop an NNGP model. For implementation, 

the spConjNNGP function in the spNNGP package of R was 

used. An NNGP model requires determining the number of 

nearest neighbors to consider. In the default setting of the 

spConjNNGP function, it is 156. When the relation between the 

number of nearest neighbors k and CV score (MSE) was plotted7, 

there was a tendency for the MSE to decrease to approximately k 

= 30 and then increase (Figure 5). Thus, the number of nearest neigh-

bors was set as k = 30 in performing the validation.  

 

Figure 5: Change in the MSE according to the number of nearest 

neighbors (in the case of n=105) 

6 In the default setting of the spConjNNGP function, the value is 15.  
7 Because n = 104 and n = 106 did not produce large differences, the results of n 
= 105 are shown here. 

Variable name Coef. t value 

Constant term 10.81 4505 

Years built -0.001155 -444 

Walk time to nearest station -0.00004840 -98.3 

Floor-area ratio 0.001294 228 

Number of rooms 0.1486 257 

Direction_Northeast 0.08202 28.3 

Direction_East -0.006518 -3.41 

Direction_Southeast 0.0008989 0.454 

Direction_South -0.02640 -14.7 

Direction_Southwest 0.001473 0.740 

Direction_West 0.01494 7.49 

Direction_Northwest 0.07861 26.9 

Direction_Others -0.07103 -36.7 

Structure_B 0.2078 7.00 

Structure_S 0.09511 94.9 

Structure_RC 0.2418 274 

Structure_SRC 0.3670 206 

Structure_PC 0.2161 35.1 

Structure_HPC 0.1186 5.27 

Structure_LS 0.05787 51.5 

Structure_ALC 0.09498 32.9 

Structure_RCB 0.08847 3.31 

Structure_Others 0.1716 18.9 

Room layout_K 0.0414 35.4 

Room layout_SK 0.1010 12.5 

Room layout_DK 0.1370 100 

Room layout_SDK 0.3696 39.6 

Room layout_LK 0.3052 9.87 

Room layout_SLK 0.3322 5.82 

Room layout_LDK 0.2765 213 

Room layout_SLDK 0.5988 138 

Use district_2 Exc Low -0.1231 -29.0 

Use district_1 Exc Med -0.1494 -120 

Use district_2 Exc Med -0.2747 -180 

Use district_1 Res -0.2341 -196 

Use district_2 Res -0.2444 -137 

Use district_ Quasi-Res -0.2884 -98.4 

Use district_ Neighborhood Comm -0.2594 -153 

Use district_ Commercial -0.4571 -180 

Use district_ Quasi-Ind -0.1891 -125 
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(C) DNN  

This subsection explains the DNN settings. DNN has a 

number of parameters to be determined, including the number of 

layers, the number of units in the hidden layers, learning rate, and 

batch size. In addition, the DNN parameter space has a tree structure, 

which means that we must be aware of the presence of conditional pa-

rameters. For example, the number of units in each layer cannot be de-

termined until the determination of the number of layers. The presence 

of these hyper parameters is undoubtedly a source of the plasticity and 

high predictive accuracy of a DNN. Conversely, there is no denying 

that the difficulty in and personalization of settings are obstacles for 

applied researchers and practitioners who are interested in the pre-

diction of real estate sale and rent prices.  

Thus, in this study, optimization for hyperparameters set-

ting were considered. The grid and random searches are widely 

known as typical methods for DNN parameter tuning (Bergstra 

and Bengio, 2012). In this study, a more efficient optimization tech-

nique known as the tree-structured Parzen estimator (TPE) was 

adopted (Bergstra et al., 2011). The reason for adoption is its ability 

to well address the tree-structured parameter space of DNNs and its 

numerous records of adoption with proven performance to some 

degree (Bergstra et al., 2011; Bergstra et al., 2013). Nevertheless, the 

parameter space (range of search) must be given a priori, and after 

much trial and error, it was set as shown in Table 3.  

 
Table 3: DNN hyper parameter and search range 

 

ReLU8 and MSE (refer to §3.2) were used for the activation 

function and loss function, respectively. Regarding the optimizer for the 

DNN, because relatively large differences were found in the results ac-

cording to the type of algorithm used, results using typical algorithms, 

RMSprop (Tieleman and Hinton, 2012) and Adam (Adaptive 

moment estimation) (Kingma and Ba, 2014), are shown. Tech-

niques designed to prevent overtraining such as regularized terms 

and dropout were not used in this study. Keras9 was used for the 

development of a DNN, and Optuna10, a framework developed via 

Preferred Networks, Inc., was used for TPE implementation.  

The learning procedure for a concrete model was undertaken as 

                                                           
8 Historically, Sigmoid and Tanh were primarily used. Currently, ReLU has 
been accepted as a standard activation function (LeCun et al., 2011). 

follows. First, based on the t th hyper-parameter candidate vectors	  

and the results of applying a five-fold cross validation with training data 

for each 	  (MSE, eq. (11)), a 50-fold search was performed us-

ing TPE. Second, a model was created once again using the op-

timal hyper-parameter vector thus obtained and all the training 

data to assess the predictive accuracy of the testing data. The ex-

planatory variables used were standardized in advance. Table 4 shows 

the optimization results of the hyper parameters.  

 

Table 4: DNN hyper parameters after optimization 

 
 

(4)  Results 

The predictive accuracies by sample size for each model 

are shown in Table 5.  

 
Table 5: Prediction results by sample size for each model 

 
 

As shown in Table 5, as a DNN optimizer, Adam had considerably 

higher predictive accuracy compared to that of RMSprop. There-

fore, for comparison to other models, Adam was used as a refer-

ence. The predictive accuracies of OLS did not display large differ-

ences even if the sample size increased. This would be because 

OLS, which did not use local spatial information, has a simple 

model structure such that n = 104 was sufficiently large for deter-

mining parameters. NNGP demonstrated the best results of all 

three models, for any sample size and any error measures. Even 

9 https://keras.io 
10 https://optuna.org 

Hyper parameters Search range Type 

# of hidden layers [1, 5] Integer 

# of unites [10, 50] Integer 

Batch size [32, 128] Integer 

# of epochs [10, 30] Integer 

Learning rate [10−5,  10−2] (log) Real 

n = 104 n = 105 n = 106 

# of hidden layers 5 3 5 

# of unites [46,16,32,30,43] [26,15,27] [37,22,24,31,50] 

Batch size 33 45 125 

# of epochs 15 19 25 

Learning rate 0.009616156 0.005601793 0.000805416 

 OLS NNGP DNN(Adam) DNN(RMSprop) 

n = 104 MAE 0.215 0.127 0.212 0.227 

 MSE 0.074 0.032 0.083 0.102 

 RMSE 0.273 0.178 0.289 0.319 

 MAPE 1.938 1.152 1.920 2.041 

n = 105 MAE 0.216 0.118 0.155 0.165 

 MSE 0.077 0.025 0.043 0.048 

 RMSE 0.279 0.159 0.208 0.219 

 MAPE 1.948 1.062 1.394 1.483 

n = 106 MAE 0.217 0.112 0.114 0.132 

 MSE 0.078 0.024 0.025 0.033 

 RMSE 0.280 0.155 0.159 0.182 

 MAPE 1.955 1.013 1.031 1.195 
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with a relatively smaller sample size (n = 104), it showed high accu-

racy (MAPE = 1.152). At n =104, DNN had a larger error than 

that of OLS when considering the root mean square error 

(RMSE) (OLS: RMSE = 0.273, DNN: RMSE = 0.289). How-

ever, it had a larger margin of improvement in accuracy with an 

increase in sample size, and at n = 106, it reached the same level as 

that of NNGP. These results implied that DNN could be useful par-

ticularly in a context in which the sample size is large. In other 

words, in a context in which the sample size is small, its predictive 

accuracy does not differ much from that of OLS and this is consid-

ered to have led to the mixed findings of previous studies as dis-

cussed in section 2. Figure 6 shows scatter plots depicting predicted 

and actual rent prices at n = 106. 

 
Figure 6: Scatter plot of predicted (horizontal axis) and actual (verti-

cal axis) rent prices for each model (in a case of n = 106) 

 

From Figure 6, we can see that, across all models, the predictive 

accuracy is poor particularly in areas where the rent price is high. 

To more closely evaluate, the MAPE per logarithmic rent price 

range for each model is shown in Table 6. The comparison be-

tween NNGP and DNN shows that DNN was more accurate in 

the high-rent areas with a logarithmic rent price of 12 or greater and 

low-rent areas with a logarithmic rent price of 10-11. By contrast, 

NNGP performed better in the median-rent areas with a logarith-

mic rent price of 11-12.  

Table 7 shows the relative frequency of the prediction er-

ror: 100
	 	 		

%  for n = 106. According to Table 7, DNN 

had a higher percentage of samples with an error rate of 3.5% or 

greater than that of NNGP (DNN: 2.461, NNGP: 2.133). Regard-

ing the entire mean prediction result, DNN and NNGP showed 

similar levels of accuracy (MAPE). These results suggest that 

DNN shows robustness for rent price outliers but relatively high 

prediction errors in the vicinity of the median (rent) value. However, 

NNGP tends to have low predictive accuracy for samples that de-

viate from the median value. This would probably be because 

DNN is a non-linear model while NNGP is a semi-log-linear 

model.  

These results suggest that, regarding rent price prediction 

models using standard explanatory variables, if the sample size is 

moderate (n = 104, 105), Kriging (NNGP) is useful, whereas if a 

sufficient sample size is secured (n = 106), DNN may be promising.  

 
Table 6: MAPE per log (rent) range 

 
 

Table 7: Relative frequency (%) (n=106) of prediction error rate (%) 

 

 

5. Concluding remarks 

 

As mentioned in section 1, there is a need for an accurate prediction 

model of real-estate sale and rent prices for businesses and consumers. 

The aim of this study was to compare and discuss rent price prediction re-

sults based on regression approaches ([1] OLS and [2] spatial statistical ap-

proach (Kriging)) and [3] the machine learning approach (DNN) using 

various sample sizes. As the sample size increases (for example, n = 105), 

it is increasingly more difficult to straightforwardly apply Kriging which 

requires the cost of O(n3) for the inverse matrix calculation of a variance–

covariance matrix. Hence as a spatial statistical approach, NNGP was 

used which allows application of Kriging to big data. For the machine 

learning approach, DNN, a representative technique, was used. DNN can 

 Log(rent) OLS NNGP DNN 

∼10 6.787  3.936  3.940  

10∼10.5 3.456  1.704  1.508  

10.5∼11 1.657  0.959  0.931  

11∼11.5 1.602  0.852  0.920  

11.5∼12 2.712  1.113  1.328  

12∼12.5 4.718  1.784  1.734  

12.5∼13 7.549  3.810  3.265  

13∼ 13.505  8.335  7.792  

Prediction 

error rate % 
OLS NNGP DNN 

0 ∼0.5 16.65 34.33 33.16 

0.5 ∼1.0 15.77 26.38 26.49 

1.0∼ 1.5 14.41 17.08 17.53 

1.5 ∼ 2.0 12.52 10.1 10.09 

2.0 ∼ 2.5 10.56 5.485 5.605 

2.5 ∼ 3.0 8.646 2.919 3.026 

3.0 ∼3.5 6.47 1.567 1.634 

3.5 ∼ 14.98 2.133 2.461 

Total (%) 100 100 100 
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consider spatial dependence through a non-linear function for posi-

tion coordinates without explicitly modeling the spatial dependence 

as in NNGP.  

For validation, from the “LIFULL HOME'S Data Set”11, a 

data set for apartment rent prices in Japan—rent, lot size, location 

(municipality, zip code, nearest station, and walk time to nearest sta-

tion), year built, room layout, building structure, and equipment for 

approximately 5.33 million properties across Japan—was used. To 

assess the effect that the sample size has on the difference in predictive ac-

curacy, properties with missing data were eliminated and then, n = 104, 

105, and 106 properties were completely randomly sampled to com-

pare the rent price prediction accuracy based on approaches [1], [2], 

and [3]. The number of explanatory variables, K, was 43 including con-

stant terms.  

Our analysis showed that, with an increase in sample size, 

the predictive accuracy of DNN approached that of NNGP and they 

were nearly equal on the order of n = 106. During this experiment, 

standard explanatory variables that typically had been incorporated into 

the regression-based hedonic model were used. It is no exaggeration to 

say that, under these standard settings, the use of regression-based NNGP 

is sufficient even if the sample size is on the order of n = 106. Note, how-

ever, that DNN is expected to be useful in contexts where K is even larger, 

e.g., when image data is used for explanatory variables. The possibility of 

DNN must await further investigation.  

In addition, regarding both higher-end and lower-end properties 

whose rent prices deviate from the median, our study suggested that DNN 

may have a higher predictive accuracy than that of NNGP. This is be-

cause unlike NNGP, DNN can explicitly consider the non-linearity 

of the function form. Regarding this, the usefulness of the regression 

approaches that consider the non-linearity of the function form, as in 

the geoadditive model (Kammann and Wand, 2003), was demon-

strated by the experiment conducted by Seya et al. (2011) using small 

samples. It will be worthwhile to test this using big data in the future. 

In this study, many DNN hyper parameters were determined 

using optimization techniques to eliminate tailored and ad hoc setting as 

much as possible. Nevertheless, a certain portion of this procedure, 

including the setting of parameter search range, had to depend on 

trial and error. Because the difficulty of setting hyper parameters 

in DNNs poses an obstacle to their actual operation for applied re-

searchers and practitioners who are involved in the prediction of real 

estate sale and rent prices, there is an urgent need to accumulate study 

results to resolve this issue. Additionally, it is also important to estab-

lish an effective means to set NNGP hyper parameters.  

 

                                                           
11 https://www.nii.ac.jp/dsc/idr/lifull/homes.html 
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