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Public transport is expected to deliver reliable services, while unplanned long dwell time resulting from 

high boarding/alighting passenger demand and in-vehicle overcrowding may generate significant delay, 

which can be frequently observed on bus as well as rail lines. The delay accumulated over successive stops 

may considerably shorten the headway between the delayed service and the following one. A headway 

being shorter than a threshold is defined as public transport bunching in this paper, and it may force the 

operator to slow down or hold the following service. This paper proposes a methodology to predict the 

bunching multiple stops in advance. A logistic regression model taking dwell time and headway at upstream 

stops as the predictor variables is used to derive the probability of the headway being below a threshold at 

a distanced downstream stop. Furthermore, how to select the proper cut-off point for the predicted 

probability is discussed. Bus AVL (Automatic Vehicle Location) data collected in Kyoto City is used to 

verify the methodology. This paper also discusses similarities and differences to be considered by rail 

operators for predicting delays and bunching. 
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1. INTRODUCTION 
 

Bunching is a frequently occurring undesired 

event for public transport. Generally it can be defined 

as the phenomenon of two successive public 

transport runs (PTRs) of a single line arriving at a 

stop within significantly shorter headways than the 

designed one. Bunching involving more than two 

PTRs is also regularly observed. PT bunching may 

be initiated by the arrival of one PTR being delayed 

at an upstream stop. More passengers are likely to 

accumulate for the delayed run at that stop and it is 

thus further delayed. Conversely, the subsequent run 

has fewer passengers to pick up and departs earlier 

than scheduled. Accumulated delay to the first run 

and increasingly earlier arrival of the second one 

result in obvious inequality in dwell times and on-

board passenger numbers. As the inequality 

aggravates over a sequence of stops, the scheduled 

headway is significantly shortened or eventually 

offset and the leading run among bunched run is 

often overcrowded. 

Accurate prediction on headway or bunching itself 

can help to spotlight the coming bunching and 

further assist the operator to eliminate bunching in 

real time. A useful prediction tool is expected to a) 

have a long enough prediction horizon to allow the 

operator’s implementation of countermeasures and b) 

provide information on the reliability of the 

prediction. The latter point is important in order to 

account for different preferences among operators. A 

bunching-averse operator is willing to frequently 

control the service to avoid any possible bunching, 

whereas some other operators may hesitate to take 

control action that will negatively impact some 

passengers, they thus only correct the predicted 

bunching of high confidence level. Therefore, this 

paper suggests a probabilistic binary prediction 

method. 

This study aims to extend the existing literature in 

two aspects. Firstly, this study builds a LOGR 

(Logistic Regression) model to predict the likelihood 

of bunching to occur using bus GPS data, and tests 
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the prediction performance under a wide range of 

prediction horizons varying from 1-stop-ahead to 15-

stop-ahead, with an emphasis on multi-stop-ahead 

prediction and understanding the regularity 

deterioration pattern. Secondly, this study tries to 

enhance the robustness and flexibility for existing 

prediction tools. To achieve this ROC (Receiver 

Operator Characteristic) curves are utilized. This 

method is widely used in evaluating the performance 

of binary classification models and in this study it is 

interpreted as the optimal front of the proposed 

LOGR. This study explains how to conduct the trade-

off between “sensitivity” and “specificity” from an 

operator’s perspective. 
The paper is organized as follows. After this 

introduction, Section 2 contains a literature review 

concerning the PT bunching problem and headway 

prediction. The predictive methodology using 

logistic regression is elaborated in Section 3. Then 

two headway-predicting algorithms: LR (Linear 

Regression) and SVM (Support Vector Machine) are 

taken as the two benchmark approaches in this study 

and are also briefly introduced in this section. In 

Section 4, the characteristics of the collected data are 

described, including data collection period, average 

stop-to-stop travel time, average scheduled headway, 

fluctuation patterns for headway, etc. Based on this, 

a proper prediction horizon and bunching threshold 

are determined. In Section 5, the prediction 

performance of the proposed LOGR is evaluated and 

compared with headway-based methods. The trade-

off functionality of LOGR is discussed in Section 5 

as well. Conclusions and potential application on 

railway transit can be found in Section 6. 

 

 

2. LITERATURE REVIEW 

 

Most of the relevant existing literature can be cast 

into two categories according to their objective: 

bunching prediction and corrective strategies. Bus 

transit system is more vulnerable to bunching, and a 

large body of literature discussed how to eliminate 

bus bunching using analytical or simulation methods 

following the seminal work by Newell and Potts 

(1964). Osuna and Newell (1972) and Newell (1974) 

tried to maintain the bus schedule by a single control 

point. On the other hand, advanced control methods 

such as dynamic holding control proposed by 

Eberlein et al (2001), Daganzo (2009), Xuan et al 

(2011), Bartholdi and Eisenstein (2012), Zhang and 

Lo (2018) and velocity control developed by 

Daganzo and Pilachowski (2011) as well as stop 

skipping discussed by Sun and Hickman (2005) 

assume frequent and efficient communication 

between bus drivers and the control center. Berrebi 

et al (2018) tested the control strategies proposed by 

Dagazo (2009), Xuan et al (2011), Bartholdi and 

Eisenstein (2012), Daganzon and Pilachowski (2011) 

on a bus route in Portland, Oregon. The experiment 

was based on real bus AVL (Automatic Vehicle 

Location), APC (Automatic Passenger Counter) and 

traffic signal data. The effectiveness of each strategy 

to stabilize bus headways was confirmed. Further, 

the effect of incorrect future headway prediction on 

each strategy was discussed. The variance of 

controlled headway was found rising significantly as 

the prediction errors increased. Instead of actively 

adjusting the headway, Schmöcker et al (2016), Wu 

et al (2017), Sun and Schmöcker (2018) discussed 

passive strategies such as passenger re-distribution 

and overtaking which are activated when bunching 

occurs. These strategies aim to equalize passenger 

boarding numbers for bunched buses through queue 

management. 

Substantial development in data collection 

technology recently gives scholars the access to 

massive public transit data including AVL, APC and 

AFC (Automatic Fare Collection) data, and has led 

to a large number of studies concerning real-time 

prediction on operational aspects. Rather than 

predicting bunching events, most existing literature 

focuses on the arrival time and headway. Hans et al 

(2015) developed a sequential mesoscopic 

simulation which elaborately considered the 

stochastics generated during bus dwell time and link 

travel time. A bundle of possible future trajectories is 

obtained based on the distribution assumed for 

associated parameters, delivering robust prediction 

results to the operator. Distribution or range for 

future arrival time and headway can also be easily 

obtained. A shortcoming of this method is that the 

predicted range of arrival time or headway might be 

too wide to be conclusive for operators’ decision 

making. Yu et al (2016) conducted a solid literature 

review on the methods addressing bus arrival time 

prediction. They reviewed the implemented data 

source and algorithm of each relevant literature. 

SVM, KF (Kalman Filter), KNN (K-Nearest 

Neighbor), ANN (Artificial Neural Network) and 

regression-based methods are frequently used. Yu et 

al (2011) used SVM, ANN, KNN, and LR to predict 

arrival time for a 0.7km common line section where 

more than 10 bus routes overlapped in Hong Kong. 

Future headway is the difference between the 

predicted arrival times of two consecutive buses and 

can be obtained by arrival time prediction method. 

There are also some studies directly focusing on the 

prediction of headway itself. Yu et al (2017) 

proposed a probabilistic prediction approach using 

RVM (Relevance Vector Machine) to attach a 

confidence interval for each predicted headway for 
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2- and 3-stop-ahead. Outperformance with respect to 

robustness was concluded by comparing the results 

with the deterministic single values derived by SVM, 

KF, KNN and ANN algorithms. Andres and Nair 

(2017) integrated headway prediction and bus 

holding control strategies. Regression, ANN and 

autoregressive models are used in their work to 

predict future headways with 5min and 10min 

prediction horizons. The prediction results are 

applied as input to an analytical model extending 

Daganzo (2009). 

Although headway prediction methods have made 

great advancement, it remains a challenging work to 

successfully identify coming bunching events in 

multiple-stop-ahead prediction. The accuracy of 

bunching prediction is heavily dependent on the 

reliability of headway prediction whose results 

deteriorate gradually as the prediction horizon 

extends. Yu et al (2016) used several well-developed 

algorithms to predict headway first then convert the 

result to binary bunching occurrence. 2min RMSE is 

obtained for headway and 99% sensitivity is realized 

for bunching in 2-stop-ahead prediction, but the 

performance deteriorates to 6min RMSE and 73% 

sensitivity for 5-stop-ahead prediction. Moreira-

Matias et al (2016) built a regression-based model to 

predict the headway for a downstream stop and 

calculate the likelihood of bus bunching to occur for 

all the further downstream stops. The focus of their 

study was to propose a proactive control framework 

in which every suspicious event triggers a bunching 

alarm. The effect of bunching likelihood thresholds 

was not investigated. It should be noted that Moreira-

Matias et al (2016), Andres and Nair (2017), Berrebi 

et al (2018) combined prediction and correction, and 

tested the feasibility and benefit of putting corrective 

strategies into practice. Instead of bunching 

prediction, Arriagada et al (2019) used bus GPS data 

and smartcard data to investigate the causes of bus 

bunching, with an emphasis on the planning side. 

Scheduled frequency, stop location and 

configuration (number of the berths), traffic signal 

and bus lane design are found influential. 
 

 

3. METHODOLOGY 
 

(1) The identification of bunching event 

As a bunching event involves two PTRs we refer to 

these as front run and back run respectively. Let a 

binary variable 𝑏𝑚
𝑛  denote whether run m is caught in 

bunching as the back run during its dwelling at stop n. 

𝑎𝑚
𝑛  and 𝑑𝑚

𝑛  denote the arrival and departure time of 

run m at stop n respectively. At stop n, for each run 

𝑚 (m≥2) we can obtain ∆𝑚−1,𝑚
𝑛  which is the time 

interval between the arrival time of run m and the 

departure time of run m-1 in (1). Run m is considered 

bunched with run m-1 at the stop when ∆𝑚−1,𝑚
𝑛  is 

below a threshold ∆0. The threshold can be determined 

by the operator. Yu et al (2016) and Moreira-Matias et 

al (2016) used 1/4 of the scheduled headway. ∆𝑚−1,𝑚
𝑛  

is defined as the departure-to-arrival headway in this 

study. Different from arrival-to-arrival or departure-to-

departure headway, ∆𝑚−1,𝑚
𝑛  is negative when two runs 

overlap at the stop. As overtaking is not allowed, for 

each stop n, run m-1 always arrives and departs earlier 

than run m, and accordingly time interval ∆𝑚−1,𝑚
𝑛  can 

always be obtained before the departure of run m. 

 

∆𝑚−1,𝑚
𝑛 = 𝑎𝑚

𝑛 − 𝑑𝑚−1
𝑛   (1) 

 
For each run m (m≥2), the binary bunching status 

𝑏𝑚
𝑛  can be derived by (2) 

 

𝑏𝑚
𝑛 = {

1, ∆𝑚−1,𝑚
𝑛 ≤ ∆0

0, ∆𝑚−1,𝑚
𝑛 > ∆0

  (2) 

 

(2) Variable selection 

Following afore reviewed literature the 

continuous ∆𝑚−1,𝑚
𝑛  can be used as the dependent 

variable for headway-prediction approaches. For 

bunching prediction then an additional step is 

required judging whether the predicted headway is 

below a prior defined bunching threshold or not. 

Instead, in this study, 𝑏𝑚
𝑛  is used as dependent 

variable using logistic regression to directly predict 

the binary bunching status and bunching 

probabilities.  

Gradually accumulated or suddenly significant 

inequality in dwell time and travel time might lead 

two successive runs to be bunched. The back run in 

a bunching event tends to have a shorter forward-

looking headway, negative deviation from timetable 

(ahead of schedule), less on-board passengers and 

shorter dwell time than those of front runs in a 

bunching event or of non-bunched runs (analysis 

based on tram data by Degeler et al, 2018). Yu et al 

(2016) used boarding and alighting numbers of two 

successive buses, link travel time and headway at an 

upstream stop as the input to their headway-based 

prediction approach. As only AVL data is used in this 

study, information regarding boarding, alighting as 

well as on-board passengers are not available. 

Instead dwell time is included in the variable set in 

addition to headway. Deviation from the timetable is 

excluded here, as the dispatching is not based on the 

timetable in some cities and the data for this variable 

might not be available. To conclude, dwell time of 

two successive buses and their headway at an 

upstream stop n-k are used as the main leading 

indicators of a coming bunching event in the k-step-

ahead prediction. The detailed notation is as follows: 
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𝑡𝑚
𝑛−𝑘 dwell time of run m at stop n-k 

𝑡𝑚−1
𝑛−𝑘  dwell time of run m-1 at stop n-k 

∆𝑚−1,𝑚
𝑛−𝑘  time interval between the arrival time of 

run m and the departure time of run m-1 at stop n-k 

k prediction horizon in terms of number of 

stops 

 

(3) Logistic regression 

LOGR (Logistic Regression) modeling is widely 

used in classification problems. In binary 

classification it not only helps to categorize 

observations into positive or negative classes, but 

also interprets the causality by producing the 

significance of each independent variable. Moreover, 

it computes the probability of each observation to be 

in the positive or negative class. The binary bunching 

status from the perspective of the back brun 𝑏𝑚
𝑛  

(m≥2) is taken as the dependent variable. 𝑡𝑚
𝑛−𝑘 , 

𝑡𝑚−1
𝑛−𝑘 , and ∆𝑚−1,𝑚

𝑛−𝑘  are the independent variables. 

Let 𝑿𝑚
𝑛 = [𝑡𝑚

𝑛−𝑘 , 𝑡𝑚−1
𝑛−𝑘 , ∆𝑚−1,𝑚

𝑛−𝑘 ], then probability 

of run m being bunched at stop n as the back vehicle 

can be derived as 

 

𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑋𝑚

𝑛 ) =
1

1+𝑒−𝜷𝑿𝑚
𝑛    (3) 

 

with parameters 𝜷 = [𝛽0, 𝛽1, 𝛽2, 𝛽3 ] obtained by 

fitting the model with real data. Then 𝑃𝑟(𝑏𝑚
𝑛 =

1|𝑿𝑚
𝑛 ) for each run m at any stop n for the same or 

a different data sample can be computed. 𝑏𝑚
𝑛  is 

predicted to be positive (one-event) if 𝑃𝑟(𝑏𝑚
𝑛 =

1|𝑿𝑚
𝑛 ) exceeds a probability threshold 𝑃𝑟𝑥 which 

is also known as the cut-off point, otherwise, 

negative (zero-event). 

 

𝑏𝑚
𝑛 = {

1, 𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑿𝑚

𝑛 ) > 𝑃𝑟𝑥  

0, 𝑃𝑟(𝑏𝑚
𝑛 = 1|𝑿𝑚

𝑛 ) ≤ 𝑃𝑟𝑥
 (4) 

 

(4) Linear regression and SVM as benchmark 

solutions 

We now turn to two headway prediction methods 

that we consider as benchmarks compared to the 

afore introduced direct bunching prediction method.  

Firstly, we consider LR (Linear Regression) which is 

a basic tool in addressing prediction problems. To 

make LR comparable with LOGR, the same set of 

independent variables 𝑿𝑚
𝑛 = [𝑡𝑚

𝑛−𝑘, 𝑡𝑚−1
𝑛−𝑘 ,

∆𝑚−1,𝑚
𝑛−𝑘 ] is applied. With 𝜷′ = [𝛽0

′ , 𝛽1
′ , 𝛽2

′ , 𝛽3
′ ] the 

relationship between the headway at stop n and the 

set of the independent variables containing 

information k-stop-ahead is modeled as  

 

∆𝑚−1,𝑚
𝑛 = 𝜷′𝑿𝑚

𝑛   (5) 

 

Secondly, SVM (Support Vector Machine) can 

map a non-linear relationship for model input and 

output, and is tested by a number of studies in 

predicting bus headway or arrival time (Yu et al 

(2011), Yu et al (2016, 2017)). The same independent 

variables and dependent variable are applied to the 

SVM regression, and a RBF (Radial Basis Function) 

kernel is selected because it is found both efficient 

for bus arrival time prediction (Yu et al, 2011) and 

for bus headway prediction (Yu et al, 2016). 

 

 

4 DATA DESCRIPTION 

A circular bus line, Kyoto City Bus No. 205, 

which connects the city center, railway station and 

several famous tourist attractions (Fig. 1(middle)) is 

selected for the case study. There are 53 stops on this 

bus line in total. To exclude the effect of dispatching 

at the terminal and factors for which we do not have 

data (e.g. driver issues, departure time adjustments), 

the 2nd stop of the line is taken as the initial stop and 

the 52nd stop as the last one so that each bus run 

passes 51 bus stops. Data of five weekdays in April 

2016 are used as the training dataset and those of 

another five weekdays in the same month are used 

for testing the model. 

The scheduled headway varies from hour to hour, 

and the mean scheduled headway at the initial stop is 

6.97min from 6 am to 8 pm. The shortest scheduled 

headway is 3min at 7 am. Based on this, 1min is used 

for the bunching threshold as larger threshold can 

include headway variance that does not lead to 

bunching.  

Adequate time is required to project a successful 

correction, in particular, if the control strategy is 

based on manual communication between the 

dispatcher and the bus drivers. In this study, the 

proposed approach is tested under a long prediction 

horizon of 10 stops or more which gives the operator 

more than 15min to react since the mean stop-to-stop 

travel time is 1.77min. 

The headway fluctuation patterns of several 

bunched buses are demonstrated in Fig. 2. Because 

of the bunching effect, the forward-looking headway 

of back buses fluctuate within a small range and keep 

below one minute once bunching has been occurring, 

giving further support to our threshold choice of one 

minute. 
 

 
Fig. 1 Data collected (left), data of Kyoto City Bus No. 205 

(middle) and its configuration on real map (right). 
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Fig. 2 Headway fluctuation along the line for bunched buses 

 

 

5 BUNCHING PREDICTION RESULTS 

 

(1) Performance evaluation index 
We define an actual bunching as “observed 

positive” and a predicted bunching as “predicted 

positive”. Similarly, for non-bunching we define 

“observed negative” and “predicted negative”. All 

the prediction results can be cast into four categories 

as is shown in Table 3, e.g. it is a true positive if an 

observed bunching is correctly labeled one in the 

prediction outcomes. Four indexes can be obtained 

from (6) to (9). A binary classifier with high true 

positive rate and high true negative rate is desired. 

The former is commonly referred to as “sensitivity” 

and the latter as “specificity”. Sensitivity, specificity 

and accuracy, which is an index computed with (10) 

to indicate overall prediction performance, are 

applied to evaluate the binary classification 

performance of the three algorithms. 

 
Table 1 Four categories for binary classification results 

 Observed 

positive (OP) 

Observed 

negative (ON) 

Predicted 

positive (PP) 

True positive 

(TP) 

False positive 

(FP) 

Predicted 

negative (PN) 

False negative 

(FN) 

True negative 

(TN) 

 

True positive rate (TPR, sensitivity, SES) = 
∑ TP 

∑ OP
  (6) 

 

True negative rate (TNR, specificity, SPC) = 
∑ TN 

∑ ON
 (7) 

 

False positive rate (FPR) = 
∑ FP 

∑ ON
   (8) 

 

False negative rate (FNR) = 
∑ FN 

∑ OP
   (9) 

 

Accuracy (ACC) = 
∑ TP +∑ TN 

∑ OP+∑ ON
  (10) 

 

 

For headway-based methods, only one 

combination of sensitivity and specificity is derived, 

as headway prediction produces an exact value for 

each headway, resulting in deterministic true positive 

and negative outcomes. Instead, by using logistic 

regression different combinations are obtained 

depending on the cut-off point applied to the 

predicted probability. The cut-off point is the 

threshold to determine the predicted positive. The 

event is judged as positive if its predicted probability 

exceeds the cut-off point. A high cut-off point tends 

to only identify events presenting convincingly high 

probability as positives, and consequently, it thus 

might misclassify observed positives as negative. 

Vice versa, a low cut-off point will lead to more false 

positives. Therefore the cut-off point choice should 

depend on the operator’s attitude towards bunching. 

Two scenarios are assumed here to represent 

operators with different weights to false negative 

errors (missing actual bunching). Moreira-Matias et 

al (2016) employed a large weight of 10:1 for false 

negative compared to false positive for aggressive 

control purposes. We consider more moderate 

weights of 1:1 and 3:1. 

 

Scenario 1 (LOGR-N): the operator is 

bunching-neutral, and gives equal 

weight to false positive and false 

negative. 

Scenario 2 (LOGR-A): the operator is 

bunching-averse, and gives a 3:1 

weight to false negative over false 

positive predictions. 

 

The cost function in (11) computes the total 

weighted errors given a cut-off point. For LOGR-N, 

𝑤𝐹𝑃 = 𝑤𝐹𝑁 = 1 , and for LOGR-A, 𝑤𝐹𝑃 = 1 , 

𝑤𝐹𝑁 = 3 . The cut-off point generating the lowest 

cost is taken as the optimal one. Based on the 

scenario-specific predicted positives and negatives, 

the combination of sensitivity and specificity is 

determined. 

 

𝑐 = 𝑤𝐹𝑃 ∑ FP + 𝑤𝐹𝑁 ∑ FN  (11) 
 

(2) Performance comparison 

Headway prediction results at Stop 23 “Kinkaku 

Temple”, one of the most frequented sightseeing spots 

in Kyoto, is used to illustrate the performance of LR 

and SVM on the headway. The results of 1-stop-ahead 

and 10-stop-ahead predictions are illustrated in Fig. 3. 

Reliable prediction results (MAPE = 7.42% and 

RMSE = 0.71min by LR, MAPE = 7.45% and RMSE 

= 0.71min by SVM) are produced for 1-stop-ahead 

prediction. For 10-stop-ahead prediction, the results 

obviously deteriorate (MAPE = 21.64% and RMSE = 

1.93min by LR, MAPE = 21.51% and RMSE = 1.92min 
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by SVM). We suggest they can still provide insights 

into expected fluctuation patterns downstream, but the 

exact value is not reliable. Furthermore, neither in 1- 

nor 10-stop-ahead prediction can these two methods 

perform favorably under the circumstance that the 

actual headway becomes extremely short and bunching 

is going to happen, as is highlighted by the blue box in 

Fig. 4. 

 

 
(a) 1-stop-ahead headway prediction 

 
(b) 10-stop-ahead headway prediction 

Fig. 3 Performance comparison in terms of exact headway 

value 

 

Considering that the results derived by LR and 

SVM are similar, the comparison on bunching 

prediction is among SVM and two distinguished 

scenarios based on LOGR. As is presented in Fig 

4(a), most bunching events can be detected 1-stop in 

advance by all three methods, and LOGR-A 

produces several false positives because it applies a 

more aggressive strategy to potential bunching 

events. However, LOGR-A significantly 

outperforms in 10-stop-ahead prediction, as is 

illustrated in Fig. 4(b). LOGR-A captures a number 

of observed positives that are misclassified by SVM 

and LOGR-N although it generates a few more false 

positives. 
A further comparison among two headway-based 

approaches and two scenarios of logistic regression 

is demonstrated in Fig. 5. Sensitivity, specificity and 

accuracy for the four methods under various 

prediction horizons are presented. LOGR-A shows 

remarkable robustness in terms of sensitivity. On the 

contrary to the obvious deterioration of the other 

three methods, the sensitivity of LOGR-A keeps 

above 65% under all the prediction horizons. Besides, 

it only slightly underperforms the other three 

methods in terms of specificity, indicating an 

acceptable trade-off cost. 
 

 
(a) 1-stop-ahead bunching prediction 

 
(b) 10-stop-ahead bunching prediction 

Fig. 4 Performance comparison in terms of binary bunching 

identification 

 

 
(a) Deterioration in SES as the prediction horizon extends 

 
(b) Deterioration in SPC as the prediction horizon extends 

 
(c) Deterioration in ACC as the prediction horizon extends 

Fig. 5 Performance comparison in terms of SES, SPC and ACC 

under various prediction horizons 
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(3) Discussion on the trade-off between 

sensitivity and specificity 

ROC curves created by plotting (1-SPC, SES) for 

given cut-off points are commonly used to evaluate 

the classification performance. AUC (Area Under 

the Curve) being close to one indicates good 

classification power. ROC curves under various 

prediction horizons are presented in Fig. 6. 

Furthermore, the four combinations of sensitivity 

and specificity derived by the four methods 

discussed in the previous section are indicated on 

each curve. 

For each horizon, the corresponding curve can be 

considered the optimal front derived by LOGR. If an 

algorithm outperforms LOGR, the point it represents 

should appear above the curve with a higher SES and 

lower 1-SPC. It can be observed that the two 

headway-based methods (LR and SVM) generally 

fall below and sometimes on the LOGR curve, 

although the downward deviation from the curve is 

not significant. 

 

 
 

 
Fig. 6 ROC curves under various prediction horizons (1-stop, 

5-stop, 10-stop and 15-stop ahead) 

 

It is easy to conduct the trade-off between 

sensitivity and specificity on the LOGR curve. The 

LOGR curve contains all combinations of prediction 

performance given continuous cut-off points where 

each cut-off point can be considered as optimal. A 

bunching-averse operator who is aggressive to 

eliminate bunching might desire to detect 99% of the 

positives regardless of the cost to increase false 

positive rate. This trade-off functionality 

significantly enhances the flexibility and robustness 

of existing bunching prediction approaches, 

especially for putting the predictive methodology 

into real practice. The curves provide a robust 

benchmark and insights for future algorithms that 

address bunching prediction problem. Deterministic 

methods can only produce one combination of 

prediction performance which greatly limits its 

contribution to the real application unless its 

sensitivity and specificity simultaneously achieve a 

highly reliable level. Other probabilistic methods 

generating a curve having higher AUC than LOGR 

or deterministic methods producing points of 

substantial upward deviation from the curve under 

various prediction horizons should be further 

promising extensions. 
 

 

6. CONCLUSION AND POTENTIAL 

APPLICATION ON RAILWAY TRANSIT 

 

In this study, the potential of logistic regression to 

predict bunching events for public transport is 

discussed. We compare this method with existing 

approaches that predict headways and then utilize the 

headway prediction for bunching prediction. Clearly 

headway prediction can be used for a larger range of 

purposes and deeper understanding of the service 

regularity developments as well as control strategies. 

However, bunching prediction in itself is important 

as it can be considered a distinctive state. This paper 

and other literature illustrate that headways fluctuate, 

but that, once bunching is reached, this state mostly 

continues along the line with far less headway 

fluctuation. We illustrate that when it comes to 

predicting bunching itself the newly proposed 

method has the potential to outperform headway-

based methods such as LR and SVM in several 

aspects.  

Firstly, LOGR provides superior prediction results 

under a long prediction horizon. It outperforms LR 

and SVM by 28% in sensitivity and maintains the 

same level of specificity in 10-stop-ahead prediction. 

It also shows improved resistance against 

deterioration in prediction performance as the 

prediction horizon extends. 

Secondly, robustness and flexibility are 

significantly enhanced. LOGR provides robust 

prediction results that contain various sets of 

bunching outcomes under different cut-off points. 

This enables the operator to apply weights that are in 

accordance with their attitude towards bunching and 

operation budget. Some operators with limited 

possibility or willingness to apply corrective 

measures can use SVM or LOGR with neutral cut-

off point setting. On the contrary, operators who 

desire to eliminate any possible bunching might be 

unwilling to choose headway-based methods which 

omit a considerable number of bunching in the long-
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term prediction cases. In this case LOGR-A becomes 

a much-preferred option. To conclude, LOGR 

provides operators with a wide range of options that 

can be tailored by their attitudes towards unexpected 

system disturbances. 

 

The proposed prediction methodology is validated 

by bus AVL data in this paper, and the validation by 

rail transit data is a meaningful extension. This 

methodology has potential to predict the probability 

of two trains or metro vehicles being closer than a 

threshold predetermined by the operator. Whereas 

for buses we choose a headway that is associated 

with bunching based on fluctuations (Figure 1), in 

the rail case a natural selection might be related to 

the closest distance two trains can have which is 

largely determined by the signaling system (moving 

block or fixed block). Headways being equal to this 

minimum headway will trigger an undesired holding 

or slowing down. Therefore, the bunching is 

considered one of the main causes of rail transit delay, 

and the delay might further affect the following runs. 

It will benefit the rail transit operator if the causality 

between dwell time and bunching is investigated, 

and a tailored tool that can reliably predict rail transit 

bunching and unexpected longer dwell time is 

developed. 

We suggest that dwell time and headway remain 

as powerful predictors as tested in the case study of 

bus transit. Additional variables containing network 

information should be introduced for rail, however 

because transfer demand might greatly prolong the 

dwell times. 

Furthermore, the operator can apply different cut-

off point to different stations. For the hub station 

where delay is more undesired, a lower cut-off point 

can be implemented to achieve high sensitivity and 

to avoid missing the actual bunching. 
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