ー起点多終点ネットワークにおける 経路・出発時刻同時選択型の動的利用者均衡 配分モデルの効率的解法

清水 廉¹·長江 剛志²

¹学生非会員 東北大学学生 工学研究科 (〒 980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-11-816)
 E-mail: ren.shimizu.q4@dc.tohoku.ac.jp
 ²正会員 東北大学准教授 工学研究科 (〒 980-8579 宮城県仙台市青葉区荒巻字青葉 6-6-11-814)
 E-mail: nagae@tohoku.ac.jp

本研究の目的は、一起点多終点ネットワークを対象とした動的利用者均衡配分モデルの効率的な解法を開発 することである.待ち行列モデルは point-queue モデルを想定し、利用者は出発時刻および経路の同時選択が可 能なモデルを想定する.

動的利用者均衡配分問題を(i) 起点出発時刻ごとに成立すべき相補性条件,(ii) 各終点ノードで満足されるべき first-in-first-out 条件および(iii) 出発時刻選択に関する最適性条件の3つで構成される混合相補性問題として定式化する.次に,この問題が二次計画問題に帰着させられることを明らかにし,Frank-Wolfe 法を用いて解く求解法を開発する.

Key Words: dynamic user equilibrium, simultaneous departure time and route choice model, mixed linear complementarity problem, quadratic programming, Frank-Wolfe algorithm

1. はじめに

都市交通における通勤・帰宅ラッシュ時の渋滞緩和策 の立案・評価のためには、その経済的効果を分析するた めの定量的手法が必要不可欠である.こうした定量的 分析手法において、動的利用者均衡 (DUE: dynamic user equilibrium) モデルは、古典的な静的利用者均衡配分モ デルを、日内の渋滞の発生・進展・消滅を取り扱える動 学的な枠組へと拡張したものとして重要である.本研 究では、一起点多終点ネットワークを対象として各リ ンクの待ち行列進展が point-queue モデルで表われる経 路・出発時刻同時選択型の動的利用者均衡 (DUE-SDR: DUE with simultaneous departure time and route choice) 配分モデルの解法を開発する.

DUE-SDRのモデルや解法に関しては、従来、多くの 研究蓄積が存在するが、大規模ネットワークにも適用可 能で見通しのよい定量分析手法は、筆者らの知る限り、 存在しない.その理由として、既存研究の殆どが、過度 に複雑なモデルに対して、均衡解への収束が保証されて いるとは限らない解法を適用していることが挙げられ よう.例えば、既存研究の多くは、解の許容領域が非凸 になり得る¹⁾多起点多終点ネットワークを対象としてお り、point-queue モデルよりも現実的¹だが数学的取扱い がより困難なモデル (e.g. cell tranmission model^{2),3)}) を 採用している. 最近の研究として, Han el al.⁴⁾ は, 大規 模な多起点多終点ネットワークに適用可能で, 渋滞待 ち行列の進展を CTM で表すモデルに対して, 不動点ア ルゴリズムを用いた解法を開発した. しかし, この手 法で用いられるモデルは OD ペアごとの経路集合を与 件として定式化されている²上,報告されている数値計 算結果も均衡解に収束しているとは言い難い (例えば, 同一の OD ペアでも, 経路によって交通費用が異なっ ている).

そこで、本研究では、対象とするネットワークを一起 点多終点 (夕方の帰宅時に相当)に限定し、渋滞待ち行 列を point-queue モデルで記述する代わりに、経路の列 挙が不要で均衡解への収束が保証されたアルゴリズム を開発する.具体的には、まず、Akamatsu⁵⁾の経路選 択のみの DUE モデルを出発時刻選択が可能な枠組へと 一般化した DUE-SDR モデルを、混合線形相補性問題 (MLCP: mixed linear complementarity problem)として定 式化する.次に、こうして定式化された MLCP と等価 な二次計画問題を導出し、それを Frank-Wolfe 法を用い て解くことで DUE-SDR モデルの解を求める手法を開 発する.最後に、提案手法を Sioux-Falls ネットワーク

¹ 渋滞の spill-back 現象を表現し得る, という意味で.

² そのため,解くべき問題の規模は、ネットワークそのものの規模 というより、与える経路集合の大きさによって規定される。

に適用し、未知変数が2万個程度の問題に対しても10回程度の繰返しで厳密な均衡解が得られることを示す.

2. 定式化

(1) 記号の定義

- [0,T]: 分析時間帯
- G(N, A): ネットワークを表す有向グラフ
 N: ノード集合
 - A:リンク集合
- Â_{ij}(τ):時刻 τ までのリンク (i, j) の 上流ノード i への累積流入交通量
- *L̂_{ij}(τ*):時刻 τ までのリンク (*i*, *j*)の下流ノード *j* からの累積流出交通量
- c_{ij}: リンク (i, j) の自由走行時間
- λ_{ij}(τ) = ^{dÂ_{ij}}(τ): 時刻τにおけるリンク(i, j)の上流 ノード i への流入フロー(時刻τにおける累積流入 交通量の傾き)
- μ_{ij}(τ) = d̂_{ij}(τ): 時刻τにおけるリンク(i, j)の下流 ノード j からの流出フロー(時刻τにおける累積流 出交通量の傾き)
- *µ*_{ij}: リンク (i, j) のボトルネック容量 (ボトルネックは各リンクの下流端の手前に存在すると仮定)
- *x̂_{ij}(τ*): 時刻*τ*におけるリンク(*i*, *j*)のボトルネック
 (point queue を仮定)における渋滞待ち行列台数
- $\hat{w}_{ij}(\tau) = \hat{x}_{ij}(\tau)/\bar{\mu}_{ij}$
- ^{x0}_{ij}: 初期状態におけるリンク (i, j) の渋滞待ち行

 *列*長

(2) 待ち行列進展条件

各リンクのボトルネックは、いずれもリンクの下流 端の直前に存在すると仮定する。時刻 τ におけるボト ルネック待ち行列長は、時刻 $\tau - c_{ij}$ までの当該リンクへ の累積流入量と時刻 τ までの当該リンクからの累積流 出量の差:

$$\hat{x}_{ij}(\tau) = \hat{x}_{ij}^0 + A_{ij}(\tau - c_{ij}) - L_{ij}(\tau)$$
(1)

に等しい.ここで, X_{ij}^0 は初期状態における待ち行列長 であり, 与件であるとする.表現の簡便化のため, 累積流 入交通量の定義域を $[-c_{ij}, T - c_{ij}]$ とし, $A_{ij}(\tau) = 0, \forall \tau \in$ $[-c_{ij}0)$ としている.式(1)の両辺を τ で微分すれば,以 下の渋滞待ち行列の進展条件を得る:

$$\frac{\mathrm{d}\hat{x}_{ij}(\tau)}{\mathrm{d}\tau} = \lambda_{ij}(\tau - c_{ij}) - \mu_{ij}(\tau) \quad \forall \tau \in (0, T], \qquad \hat{x}_{ij}(0) = \hat{x}_{ij}^{0}.$$
(2)

均衡状態においては,以下のごく自然な条件 (holding-free 条件):

$$\begin{cases} \hat{x}_{ij}(\tau) > 0 \quad \to \mu_{ij}(\tau) = \bar{\mu}_{ij} \\ \hat{x}_{ij}(\tau) = 0 \quad \leftarrow \mu_{ij}(\tau) < \bar{\mu}_{ij} \end{cases}$$
(3)

が成立する. これに式(2)を代入すれば、以下を得る:

$$\begin{cases} \hat{x}_{ij}(\tau) > 0 \quad \to \lambda_{ij}(\tau - c_{ij}) - \frac{\mathrm{d}\hat{x}_{ij}(\tau)}{\mathrm{d}\tau} = \bar{\mu}_{ij} \\ \hat{x}_{ij}(\tau) = 0 \quad \leftarrow \lambda_{ij}(\tau - c_{ij}) - \frac{\mathrm{d}\hat{x}_{ij}(\tau)}{\mathrm{d}\tau} < \bar{\mu}_{ij} \end{cases}$$
(4)

時刻 *τ* にリンク (*i*, *j*) に流入する利用者の渋滞待ち時 間を

$$\hat{w}_{ij}(\tau) = \frac{\hat{x}_{ij}(\tau + c_{ij})}{\bar{\mu}_{ij}} \tag{5}$$

で表せば,待ち行列進展条件(4)は, $\hat{w}_{ij}(\tau)$ のみを用いた以下の相補性条件に帰着する:

$$\begin{cases} \hat{w}_{ij}(\tau) > 0 \rightarrow \frac{\lambda_{ij}(\tau)}{\bar{\mu}_{ij}} - \frac{d\hat{w}_{ij}(\tau)}{d\tau} - 1 = 0\\ \hat{w}_{ij}(\tau) = 0 \rightarrow \frac{\lambda_{ij}(\tau)}{\bar{\mu}_{ij}} - \frac{d\hat{w}_{ij}(\tau)}{d\tau} - 1 < 0 \end{cases}$$
(6)

(3) 一起点多終点 (O2M: one-to-many) ネットワーク

a) 記号の定義

- o:純粋起点ノード(他のノードからの流入リンク が存在しないノード).もし元のネットワークに純 粋起点ノードが存在しない場合はダミーノードと ダミーリンクを用いて純粋起点ノードをもつネッ トワークを構築しておく.
- *N*⁻_o := *N* \ {o}: 起点以外のノード集合.
- S: 起点出発時刻集合.
- *τ_i(s)*: 起点を時刻 *s* に出発した利用者のノード *i* への最早到着時刻 (時計時刻). 起点においては *τ_o(s)* = *s*∀*s* ∈ [0, *T*].
- *π_i(s) = τ_i(s) s*: 起点を時刻 *s* に出発した利用 者のノード *i* への最小所要時間. 起点においては *π_o(s) = 0∀s ∈ [0, T]*.
- *ρ_i*: 終点 *i* への利用者の均衡交通費用.
- $\psi_i(s)$: 起点を時刻 *s*に出発する利用者のスケジュー ル費用. 一起点多終点モデルは帰宅ラッシュを表現 するため、スケジュール費用は終点への到着時刻で はなく、起点からの出発時刻に依存して決まる (i.e. 各利用者は終業時刻になるべく近い時刻に出発し たい). 任意の τ に対して $\psi_i(\tau) \ge 0$ かつ $\frac{d\psi_i(\tau)}{d\tau} > -1$ 3.
- *D_i*: 起点からノード*i*への総交通需要.
- *Q̂_i(τ)*:時刻τまでのノードiへの累積集中交通量
 (i.e.時点τまでにノードiでトリップを終える累積利用者数). *Q̂_i(0)* = 0 かつ *Q̂_i(T)* = *D_i*とする.
- $q_i(s) = \frac{d\hat{Q}_i(\tau_i(s))}{d\tau_i(s)} \frac{d\tau_i(s)}{ds} = \frac{d\hat{Q}_i}{d\tau_i} \left(1 + \frac{d\pi_i(s)}{ds}\right)$: 起点出発時刻 $s 別のノード i への集中フロー. \int_0^T q_i(s) = D_i.$
- $y_{ij}(s) = \frac{dA_{ij}(\tau_i(s))}{d\tau_i(s)} \frac{d\tau_i(s)}{ds} = \lambda_{ij}(\tau_i(s)) \frac{d\tau_i(s)}{ds} = \lambda_{ij}(\pi_i(s) + s) \left(1 + \frac{d\pi_i(s)}{ds}\right)$: 起点出発時刻 s 別のリンクフロー.
- *x_{ij}(s)* = *x̂_{ij}(τ_i(s)* + *c_{ij})*: 起点出発時刻 *s* 別の渋滞待 ち行列.

³ Zhang and Zhang⁶⁾ を参照.

w_{ij}(s) = ŵ_{ij}(*τ_i(s)*) = *x_{ij}(s)/µ_{ij}*: 起点出発時刻 *s* 別の 渋滞待ち時間.

b) 終点 FIFO 条件

本研究では、DUEにおいては、以下の終点 FIFO(/firstin-first-out/) 条件⁴が満たされると仮定する: 任意の2時 点 $s, s' \in S$ について、s > s'ならば、任意の終点ノー ド $i \in N$ に対して、利用者sが利用者s'より早く到着 することはない、すなわち、

$$s > s' \rightarrow \tau_i(s) \ge \tau_i(s'), \quad \forall i \in N, \forall s, s' \in S.$$
 (7)
終点 FIFO 条件 (7) は、以下のようにも表現できる:

$$\frac{\mathrm{d}\tau_i(s)}{\mathrm{d}s} = \left(1 + \frac{\mathrm{d}\pi_i(s)}{\mathrm{d}s}\right) \ge 0, \quad \forall i \in \mathcal{N}, \forall s \in \mathcal{S}, \quad (8)$$

c) 最適出発時刻選択条件

任意の終点 *i* において,各利用者は自らの交通費用 (所要時間とスケジュール費用の和)を最小化するように 出発時刻を選択する.均衡交通費用を ρ_i とおけば,最 適な出発時刻選択条件は,以下の相補性条件として記 述できる:

$$0 \le q_i(s) \bot \{\pi_i(s) + \psi_i(s) - \rho_i\} \ge 0$$
(9)

d) 最短経路選択条件

任意の起点出発時刻 s について, リンク (i, j) の両端 ノードの最早到着時刻 $\pi_i(s)$ および $\pi_j(s)$ は以下の三角 不等式を満足する:

$$\pi_i(s) + c_{ij} + w_{ij}(s) \ge \pi_j(s) \tag{10}$$

この式で等号が成立するのはリンク (*i*, *j*) が利用者 s の 最短経路に含まれている時だから,最短経路選択条件 は,以下の相補性条件として記述できる:

$$0 \le y_{ij}(s) \bot \left\{ \pi_i(s) - \pi_j(s) + c_{ij} + w_{ij}(s) \right\} \ge 0 \tag{11}$$

e) 待ち行列進展条件

リンク (*i*, *j*) $\in \mathcal{A}$ における待ち行列進展条件 (6) は, 不等式 $\frac{\lambda_{ij}(\tau)}{\bar{\mu}_{ij}} - \frac{dw_{ij}(\tau)}{d\tau} - 1 \leq 0$ の両辺に終点 FIFO 条件 $\frac{d\tau_i(s)}{ds} = \left(1 + \frac{d\tau_i(s)}{ds}\right) \geq 0$ を乗じて整理すれば,以下の出発 時刻 *s* 別の相補性条件として記述できる:

$$0 \le w_{ij}(s) \bot \left\{ \left(\frac{\mathrm{d}w_{ij}(s)}{\mathrm{d}s} + \frac{\mathrm{d}\pi_i(s)}{\mathrm{d}s} + 1 \right) \bar{\mu}_{ij} - y_{ij}(s) \right\} \ge 0$$
(12)

f) フロー保存則

時刻 τ までのノード $i \in N_o^-$ への累積流入量は、当該 ノードからの累積流出量と当該ノードでの集中交通量 の和に等しい:

$$\sum_{ji\in\mathcal{A}} L_{ji}(\tau) = \hat{Q}_i(\tau) + \sum_{ik\in\mathcal{A}} A_{ik}(\tau)$$
(13)

FIFO 原則が満たされているならば,起点を時刻 *s* に出 発した利用者がリンク (*i*, *j*) を利用する (i.e. 時点 $\tau_i(s)$ に当該リンクに流入し,時点 $\tau_j(s)$ に流出する) なら, $A_{ij}(\tau_i(s)) = L_{ij}(\tau_j(s))$ が成り立つ. これを利用すれば, 式 (13) は以下のように起点出発時刻別の保存則として 書き直せる:

$$\sum_{ji\in\mathcal{A}} A_{ji}(\tau_j(s)) = \hat{Q}_i(\tau_i(s)) + \sum_{ik\in\mathcal{A}} A_{ik}(\tau_i(s))$$
(14)

両辺を起点出発時刻 s について微分すれば

$$\sum_{ji\in\mathcal{A}} \frac{\mathrm{d}A_{ji}(\tau_j(s))}{\mathrm{d}\tau_j(s)} \frac{\mathrm{d}\tau_j(s)}{\mathrm{d}s} = \frac{\mathrm{d}\hat{Q}_i(\tau_i(s))}{\mathrm{d}\tau_i(s)} \frac{\mathrm{d}\tau_i(s)}{\mathrm{d}s} + \sum_{ik\in\mathcal{A}} \frac{\mathrm{d}A_{ik}(\tau_i(s))}{\mathrm{d}\tau_i(s)} \frac{\mathrm{d}\tau_i(s)}{\mathrm{d}s} \quad (15)$$

を得る. $y_{ij}(s) = \frac{dA_{ij}(\tau_i(s))}{d\tau_i(s)} \frac{d\tau_i(s)}{ds} および q_i(s) = \frac{d\tau_i(s)}{d\tau_i(s)} \frac{d\tau_i(s)}{ds} を$ 用いて書き直せば,起点出発時刻別のフロー保存則:

$$\sum_{ij\in\mathcal{A}} y_{ji}(s) = q_i(s) + \sum_{ik\in\mathcal{A}} y_{ik}(s)$$
(16)

を得る.なお、起点 o におけるフロー保存則は

$$\sum_{oi\in\mathcal{A}} y_{oi}(s) = \sum_{i\in\mathcal{N}_o^-} q_i(s)$$
(17)

と書けるが, 冗長となる (i.e. 起点以外で成り立つフロー 保存則に対し線形従属である) ことから, 明示的に考慮 する必要はない.

以下では,必要に応じて,フロー保存則 (16) を相補 性条件:

$$0 \le \pi_i(s) \bot \left\{ \sum_{ji \in \mathcal{A}} y_{ji}(s) - q_i(s) - \sum_{ik \in \mathcal{A}} y_{ik}(s) \right\} \ge 0 \quad (18)$$

で表す.同様に,各終点での総交通需要保存則も相補 性条件で表す.

$$0 \le \rho_i \bot \left\{ \int_0^T q_i(\tau) \mathrm{d}\tau - D_i \right\} \ge 0 \tag{19}$$

g) 均衡条件

結局,一起点多終点の DUE-SDR モデルは,以下の 混合相補性問題として記述できる:

⁴ Lo and Szeto⁷) によって導入された OD FIFO 条件と等価である

[O2M-DUE-SDR] $0 \le q_i(s) \perp \{\pi_i(s) + \psi_i(s) - \rho_i\} \ge 0, \quad \forall i \in \mathcal{N}, \forall s \in \mathcal{S}$ (20a) $0 \le y_{ij}(s) \downarrow \{\pi_i(s) - \pi_j(s) + c_{ij} + w_{ij}(s)\} \ge 0$ $\forall (i, j) \in \mathcal{A}, \forall s \in \mathcal{S}$ (20b) $0 \le w_{ij}(s) \downarrow \left\{ \left(\frac{\mathrm{d}w_{ij}(s)}{\mathrm{d}s} + \frac{\mathrm{d}\pi_i(s)}{\mathrm{d}s} + 1 \right) \bar{\mu}_{ij} - y_{ij}(s) \right\} \ge 0$ $\forall (i, j) \in \mathcal{A}, \forall s \in \mathcal{S}$ (20c) $0 \le \pi_i(s) \downarrow \left\{ \sum_{(n,i) \in \mathcal{A}} y_{ni}(s) - q_i(s) - \sum_{(i,m) \in \mathcal{A}} y_{im}(s) \right\} \ge 0$ $\forall i \in \mathcal{N}, \forall s \in \mathcal{S}$ (20d) $0 \leq \rho_i \bot \left\{ \int_0^T q_i(\tau) \mathrm{d}\tau - D_i \right\} \geq 0,$ $\forall i \in \mathcal{N}$ (20e) $\frac{\mathrm{d}\pi_i(s)}{\mathrm{d}s} \ge -1$ $\forall i \in \mathcal{N}, \forall s \in \mathcal{S}$ (20f)

これを簡潔に表現するために、以下のベクトル・行 列を導入しよう.以下では、簡単のために、唯一の起点 のインデックスをo = 1とし、それ以外のノードのイ ンデックスを $2, \dots, N$ とする. ij_1 および ij_L を、それぞ れ、リンクのインデックスの先頭と末尾とする.

$$\mathbf{y}(s) = \begin{bmatrix} y_{ij_1}(s) \\ \vdots \\ y_{ij_L}(s) \end{bmatrix}, \quad \mathbf{w}(s) = \begin{bmatrix} w_{ij_1}(s) \\ \vdots \\ w_{ij_L}(s) \end{bmatrix}, \quad \mathbf{\pi}(s) = \begin{bmatrix} \pi_2(s) \\ \vdots \\ \pi_N(s) \end{bmatrix},$$
$$\mathbf{c} = \begin{bmatrix} c_{ij_1} \\ \vdots \\ c_{ij_L} \end{bmatrix}, \qquad \mathbf{\bar{\mu}} = \begin{bmatrix} \bar{\mu}_{ij_1} \\ \vdots \\ \bar{\mu}_{ij_L} \end{bmatrix}$$
$$\mathbf{q}(s) = \begin{bmatrix} q_2(s) \\ \vdots \\ q_N(s) \end{bmatrix}, \quad \mathbf{\psi}(s) = \begin{bmatrix} \psi_2(s) \\ \vdots \\ \psi_N(s) \end{bmatrix}, \qquad \mathbf{\rho} = \begin{bmatrix} \rho_2 \\ \vdots \\ \rho_N \end{bmatrix}$$

$$A = \begin{bmatrix} a_{2,ij_{1}} & \cdots & a_{2,ij_{L}} \\ \vdots & \ddots & \vdots \\ a_{N,ij_{1}} & \cdots & a_{N,ij_{L}} \end{bmatrix} \in \mathcal{R}^{(N-1)\times L},$$

$$a_{k,ij} = \begin{cases} 1 & \text{if } k = i \text{ (i.e. } \mathcal{I} - \mathbb{F} \ k \ b^{\S} \ \mathcal{I} \$$

A₊ および *A*₋ は, それぞれ, *A* の -1 もしくは 1 の要素 を取り除いたものに相当する.

この時, [O2M-DUE-SDR] は以下のように表現できる:

$$[O2M-DUE-SDR]$$

$$\mathbf{0} \le q(s) \perp \{\pi(s) + \psi(s) - \rho\} \ge \mathbf{0} \qquad \forall s \in S \quad (21a)$$

$$\mathbf{0} \le y(s) \perp \{A^{\top}\pi(s) + w(s) + c\} \ge \mathbf{0} \quad \forall s \in S \quad (21b)$$

$$\mathbf{0} \le w(s) \perp \{\text{diag.}(\bar{\mu}) \{\dot{w}(s) + A_{+}^{\top}\dot{\pi}(s) + \mathbf{1}\} - y(s)\} \ge \mathbf{0}$$

$$\forall s \in S \quad (21c)$$

$$\mathbf{0} \le \pi(s) \perp \{-Ay(s) - q(s)\} \ge \mathbf{0} \qquad \forall s \in S \quad (21d)$$

$$\mathbf{0} \le \rho \perp \{\int_{0}^{T} q(s) ds - D\} \ge \mathbf{0} \qquad (21e)$$

$$\dot{\pi}(s) \ge -\mathbf{1} \qquad \forall s \in S \quad (21f)$$

3. 解法

(1) 時間の離散化

ー起点多終点 DUE[O2M-DUE-SDR] は、時間を適当 に離散化することで、混合線形相補性問題に帰着する. まず、出発時刻集合 Sを一定の間隔 ΔT で離散化し、そ れぞれに $\kappa = 0, 1, \dots, K$ とインデックスをつけよう. こ の離散時点の枠組下で、出発時点 κ (出発時刻 $\kappa\Delta T$) に おける q, y, w, π, ψ および対応するベクトルを

$$\begin{aligned} q_i^{\kappa} &\coloneqq q_i(\kappa\Delta T), & q_i^{\kappa} &= q(\kappa\Delta T), \\ y_{ij}^{\kappa} &\coloneqq y_{ij}(\kappa\Delta T), & y^{\kappa} &= y(\kappa\Delta T), \\ w_{ij}^{\kappa} &\coloneqq w_{ij}(\kappa\Delta T), & w^{\kappa} &= w(\kappa\Delta T), \\ \pi_i^{\kappa} &\coloneqq \pi_i(\kappa\Delta T), & \pi^{\kappa} &= \pi(\kappa\Delta T), \\ \psi_i^{\kappa} &\coloneqq \psi_i(\kappa\Delta T), & \psi^{\kappa} &= \psi(\kappa\Delta T), \end{aligned}$$

と定義する. ただし, $\kappa = 0$ における初期フローは, そ の定義から自然に

$$q_i^0 = 0 \quad \forall i \in N, \qquad y_{ij}^0 = 0 \quad \forall (i, j) \in \mathcal{A}$$
 (22)
で与えられ、 $w_{ij}^0 = \hat{x}_{ij}^0 / \bar{\mu}_{ij}$ はリンク(*i*, *j*)に初期時点で存
在する待ち行列に対する待ち時間、 $\tau_i^0 = \pi_i^0$ は $w_{ij}^0 + c_{ij}$ を
リンク(*i*, *j*)の与件の所要時間とした起点のからのノー
ド*i*までの最小所要時間として外生的に与えられるこ
ととする.

次に,各リンクの渋滞待ち時間 { $w_{ij}(s)$ } および各ノードへの最短所要時間 { $\pi_i(s)$ } の出発時刻 s についての変化量を

 $\dot{w}_{ij}(\kappa\Delta T) \approx \frac{w_{ij}^{\kappa} - w_{ij}^{\kappa-1}}{\Delta T}, \qquad \dot{\tau}_i(\kappa\Delta T) \approx \frac{\pi_i^{\kappa} - \pi_i^{\kappa-1}}{\Delta T}$

と離散近似する.同様に,交通需要の総和を下記のように離散近似する:

$$\int_0^T q_i(s) \mathrm{d}s = \sum_{\kappa=1}^K q_i^{\kappa} \Delta T$$

この離散時点の枠組下で, [O2M-DUE-SDR] は以下のように離散近似できる:

$$[O2M-DUE-SDR-Discrete]$$

$$0 \le q^{\kappa} \perp \{\pi^{\kappa} + \psi^{\kappa} - \rho\} \ge 0, \quad \kappa = 1, \cdots, K,$$

$$0 \le y^{\kappa} \perp \{A^{\top}\pi^{\kappa} + w^{\kappa} + c\} \ge 0, \quad \kappa = 1, \cdots, K,$$

$$0 \le w^{\kappa} \perp \{M(w^{\kappa} - w^{\kappa-1}) + \bar{\mu} - y^{\kappa}\} \ge 0,$$

$$\kappa = 1, \cdots, K,$$
(23a)
$$0 \le \pi^{\kappa} \perp \{-Ay^{\kappa} - q^{\kappa}\} \ge 0, \quad \kappa = 1, \cdots, K,$$
(23b)
$$0 \le \rho \perp \{\sum_{\kappa=1}^{K} q^{\kappa} - D/\Delta T\} \ge 0$$
(23c)
$$\pi^{\kappa} - \pi^{\kappa-1} \ge -1, \quad \kappa = 1, \cdots, K$$
(23d)

ただし, $M = \text{diag.}(\bar{\mu})/\Delta T \in \mathcal{R}^{L \times L}$ であり, w^0 および τ^0 はモデルの外から外生的に与えられることに注意されたい.

離散化された DUE-SDR は, さらに, 混合線形相補 性問題 (MCP: mixed complementarity problem) として記 述できる. そのために, 出発時刻別の未知変数および パラメータを縦に並べたベクトルを

$$\boldsymbol{q} = \begin{bmatrix} \boldsymbol{q}^1 \\ \vdots \\ \boldsymbol{q}^K \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^1 \\ \vdots \\ \boldsymbol{y}^K \end{bmatrix}, \quad \boldsymbol{w} = \begin{bmatrix} \boldsymbol{w}^1 \\ \vdots \\ \boldsymbol{w}^K \end{bmatrix}, \quad \boldsymbol{\pi} = \begin{bmatrix} \boldsymbol{\pi}^1 \\ \vdots \\ \boldsymbol{\pi}^K \end{bmatrix}, \quad \boldsymbol{\psi} = \begin{bmatrix} \boldsymbol{\psi}^1 \\ \vdots \\ \boldsymbol{\psi}^K \end{bmatrix}$$

で表す. このとき, **[O2M-DUE-SDR**] は以下の混合線形 相補性問題として表せる.

[O2M-DUE-SDR-MCP] Find $X = \begin{bmatrix} q & y & w & \pi & \rho \end{bmatrix}^{\perp}$ such that $0 \le X \bot F(X) = BX + b \ge 0$ (24a) and $\pi^{\kappa} - \pi^{\kappa-1} \geq -\mathbf{1}, \qquad \kappa = 1, \cdots, \mathbf{K},$ (24b) where $I_{\rm KN}$ –E $\begin{vmatrix} \mathbf{I}_{\mathrm{KL}} & \mathbf{E}_{2}^{\mathsf{T}} \\ -\mathbf{I}_{\mathrm{KL}} & \mathbf{M}_{1} & \mathbf{M}_{2} \\ -\mathbf{I}_{\mathrm{KN}} & -\mathbf{E}_{2} \\ \mathbf{E}_{2}^{\mathsf{T}} \end{vmatrix},$ B = 1(24c) E_1^{\top} $b = \begin{vmatrix} \mathbf{1}_{\mathrm{K}} \otimes c \\ -\boldsymbol{\xi}^0 + \mathbf{1}_{\mathrm{K}} \otimes \bar{\boldsymbol{\mu}} \\ \mathbf{0} \end{vmatrix}$ (24d) $\boldsymbol{E}_1 = \boldsymbol{1}_{\mathrm{K}} \otimes \boldsymbol{I}_{\mathrm{N}} \in \mathcal{R}^{\mathrm{KN} \times \mathrm{N}}, \qquad \boldsymbol{E}_2 = \boldsymbol{I}_{\mathrm{K}} \otimes \boldsymbol{A} \in \mathcal{R}^{\mathrm{KN} \times \mathrm{KL}},$ $\boldsymbol{M}_1 = \boldsymbol{\Delta}_{\mathrm{K}} \otimes \boldsymbol{M} \in \mathcal{R}^{\mathrm{KL} \times \mathrm{KL}}, \quad \boldsymbol{M}_2 = \boldsymbol{\Delta}_{\mathrm{K}} \otimes \boldsymbol{M} \boldsymbol{A}_+^\top \in \mathcal{R}^{\mathrm{KN} \times \mathrm{KL}},$ $\boldsymbol{c}_{\mathrm{K}} = \boldsymbol{1}_{\mathrm{K}} \otimes \boldsymbol{c} \in \mathcal{R}^{\mathrm{KL} \times 1}, \qquad \bar{\boldsymbol{\mu}}_{\mathrm{K}} = \boldsymbol{1}_{\mathrm{K}} \otimes \bar{\boldsymbol{\mu}} \in \mathcal{R}^{\mathrm{KL} \times 1},$ $\boldsymbol{\xi}^{0} = -\boldsymbol{e}_{1,\mathrm{K}} \otimes \boldsymbol{M} \left(\boldsymbol{w}^{0} + \boldsymbol{A}_{+}^{\mathsf{T}} \boldsymbol{\pi}^{0} \right)$ \otimes は Kronecker 積を表す. 1_K は全ての要素が1 で あるような K 次元の列ベクトル, e1K は第1要素の みが1,残りが0であるようなK次元列ベクトル, **I**_K, **I**_{KN}, **I**_{KL}は、それぞれ、K 次元, KN 次元および KL 次元の単位行列である. Δ_K は, K 次元正方行 列で,下記で定義される: $\Delta_{\rm K} = \begin{vmatrix} -1 & 1 & & \\ & -1 & 1 & \\ & & \ddots & \ddots & \\ & & & \ddots & \ddots & \end{vmatrix}$ (24e)

(2) 二次計画問題としての解法

混合相補性問題 [O2M-DUE-SDR-MCP] は,明らか に,以下の二次計画問題の最適性条件と等価である:

[O2M-DUE-SDR-QP]	
$\min_{\boldsymbol{X}} Z_{QP}(\boldsymbol{X}) = \boldsymbol{X}^{\top} \boldsymbol{B} \boldsymbol{X} + \boldsymbol{b}^{\top} \boldsymbol{X}$	(25a)
s.t. $BX + b \ge 0$	(25b)
$X \ge 0$	(25c)
$\pi^{\kappa} - \pi^{\kappa-1} \ge -1, \kappa = 1, \cdots, K$	(25d)

本研究では、問題 [O2M-DUE-SDR-QP] を Frank-Wolfe 法を用いて解くことで、DUE 配分モデル [O2M-DUE-SDR-Discrete] の解を求める方法を提案する.

a) Frank-Wolfe 法による求解

p 回目繰返しにおける暫定解を $X_{(p)} = (q_{(p)}, y_{(p)}, w_{(p)}, \pi_{(p)}, \rho_{(p)})$ としよう. このとき, $X_{(p)}$ のまわりで [O2M-DUE-SDR-QP]の目的関数を一次近似すれば,補助問題として以下の線形計画問題を得る.

[O2M-Aux-LP]	
$\min_{\boldsymbol{X}} Z_{LP}(\boldsymbol{X}) = \left(\bar{\boldsymbol{B}}\boldsymbol{X}_{(p)} + \boldsymbol{b}\right)^{T}\boldsymbol{X}$	(26a)
ψ	$\left[\right]^{T} \left[q \right]$
$= \left \begin{pmatrix} \mathbf{I}_{\mathrm{K}} \otimes \boldsymbol{c} \\ \left(\boldsymbol{M}_{1} + \boldsymbol{M}_{1}^{\top} \right) \boldsymbol{w}_{(p)} + \boldsymbol{M}_{2} \boldsymbol{\pi}_{(p)} + 1_{\mathrm{K}} \otimes \bar{\boldsymbol{\mu}} - \boldsymbol{\xi} \right $	z^{0} w
$M_2^{ op} w_{(p)}$	π
$-D/\Delta T$	$\left\lfloor ight angle ight angle$
	(26b)
s.t. $BX + b \ge 0$	(26c)
$X \ge 0$	(26d)
$\boldsymbol{\pi}^{\boldsymbol{\kappa}} - \boldsymbol{\pi}^{\boldsymbol{\kappa}-1} \geq -1, \boldsymbol{\kappa} = 1, \cdots, \mathbf{K},$	(26e)
where	
$\bar{B} = B + B^{\top}.$	(26f)

これより, 問題 [O2M-DUE-SDR-QP] を Frank-Wolfe 法で解くための手続きは, 以下のように整理できる:

[Alg-FW]
Step 0 適当な初期解 X₍₀₎ を与える. p := 0 とする. 収束判定用のパラメータ 0 < e ≪ 1 を用意する.
Step 1 目的関数 Z_{QP}(X_(p)) < e ならば終了.

Step 2 $X_{(p)}$ を与件として補助問題 [O2M-Aux-LP] を解き,その解を補助解 $Y_{(p)}$ とする. Step 3 目的関数 $Z_{QP}((1-\alpha)X_{(p)} + \alpha Y_{(p)})$ を最小と するステップ・サイズ $\alpha_{(p)} \in [0,1]$ を求める. Step 4 解を $X_{(p+1)} := (1 - \alpha_{(p)})X_{(p)} + \alpha Y_{(p)}$ と改訂 する. p := p + 1として Step 1 へ.

b) ステップ・サイズの決定方法

問題 [O2M-DUE-SDR-QP] の目的関数は二次関数で あるため, [Alg-FW] の Step 3 で必要となるステップ・ サイズは, $X_{(p)}$ における目的関数の値と,解の改訂方 向 $d_{(p)} = Y_{(p)} - X_{(p)}$ が与えられれば,以下のように解析 的に得られる.まず,暫定解 $X_{(p)}$ と補助解 $Y_{(p)}$ の凸結 合を

$$X(\alpha) = (1 - \alpha)X_{(p)} + \alpha Y_{(p)}$$

とすると, *X*(*α*) における目的関数の値は,以下の*α*の 関数として表される:

$$g(\alpha) = \frac{1}{2} \boldsymbol{X}(\alpha) \bar{\boldsymbol{B}} \boldsymbol{X}(\alpha) + \boldsymbol{b}^{\top} \boldsymbol{X}(\alpha)$$
(27)

この関数の α についての1次および2次導関数は、それぞれ、

$$g'(\alpha) = (\boldsymbol{d}_{(p)}^{\top} \bar{\boldsymbol{B}} \boldsymbol{d}_{(p)}) \alpha + \boldsymbol{d}_{(p)}^{\top} \left(\bar{\boldsymbol{B}} \boldsymbol{X}_{(p)} + \boldsymbol{b} \right)$$
(28)

$$g''(\alpha) = \boldsymbol{d}_{(p)}^{\top} \bar{\boldsymbol{B}} \boldsymbol{d}_{(p)}$$
(29)

 $X(\alpha)$

ここで、 \bar{B} は正定値行列ではないため、 $g''(\alpha) = d_{(p)}^{\mathsf{T}}\bar{B}d_{(p)}$ の符号は一意には定まらない. そこで、 $g''(\alpha)$ の符号に応じて、以下のように最適なステップ・サイズを決定する:

 g" > 0 の場合 目的関数は α に関して凸となるの で、目的関数を最小とする (γ'(α) = 0 となる) ス テップ・サイズは以下の式で求められる:

$$\alpha_{(p)} := \begin{cases} 0 & \text{if } g'(0) > 0 \\ 1 & \text{if } g'(1) < 0 \\ -\frac{g'(0)}{g''(0)} = -\frac{d_{(p)}^{\top}(\bar{B}X_{(p)} + b)}{d_{(p)}^{\top}\bar{B}d_{(p)}} & \text{otherwise} \end{cases}$$

 g" ≤ 0 の場合 目的関数は α について線形もしく は凹となるので,目的関数を最小とするステップ・ サイズは以下のように求められる:

$$\alpha_{(p)} := \begin{cases} 0 & \text{if } g(0) < g(1) \\ 1 & \text{if } g(0) \ge g(1) \end{cases}$$
(31)

c) 初期解の計算方法

本研究では, [Alg-FW] の初期解 $x_{(0)} = (q_{(0)}, y_{(0)}, w_{(0)}, \pi_{(0)}, \rho_{(0)})$ を以下のようにして求める.

[Alg-init]

- Step 1 $q_{(0)}$ を非負制約 $q_{(0)} \ge 0$ および総和制約 $\{E_1^{\mathsf{T}}q_{(0)} = D/\Delta T\}$ を満たす中から適当に与え る (e.g. $q_{i(0)}^{\kappa} = D_i/(K\Delta T)$).
- Step 2 待ち行列待ち時間の初期値 w⁽⁰⁾ および初期 時点における各ノードまでの最小費用 π⁽⁰⁾ を 与件として, w₍₀₎ および π₍₀₎ を以下のように決 定する:κ = 1,...,K の順に,以下の手続きを 繰り返すことで, y₍₀₎, w₍₀₎, π₍₀₎ を求める:
 - Step 2-0 w⁰ および π⁰ を与件とする. κ = 1 と する.
 - Step 2-1 各リンクの費用を w^{k-1}_(p) + c とし, Dijkstra 法を用いて起点を根とする最短経 路木を構築する.この最短経路木に対し て q^k₍₀₎ を各終点への交通量とした all-ornothing 配分を行ない,フロー y^k₍₀₎ を求 める.
 - Step 2-2 起点から順に,最短経路木上の全て のリンク (*i*, *j*) $\in L$ について, $w_{ij(0)}^{*}$ およ び $\pi_{i(0)}^{*}$ を以下の式で求める:

$$w_{ij(0)}^{\kappa} = \max\left\{\frac{\mathcal{Y}_{ij(0)}^{\kappa}}{\bar{\mu}_{ij}} - \left(\pi_{i(0)}^{\kappa} - \pi_{i(0)}^{\kappa-1} + 1\right), \quad 0\right\}$$
(32)

$$\pi_{i(0)}^{\kappa} = \pi_{i(0)}^{\kappa} + c_{ij} + w_{ij(0)}^{\kappa}$$
(33)

Step 2-3 κ = K なら終了. そうでないなら κ= κ + 1 として Step 2-1 へ.

4. 計算例

(1) 計算条件

本章では、提案解法の正確性および効率性を示すた めに数値実験を行う.対象ネットワークは**図**-1に示す Sioux Falls ネットワークとする.ネットワークデータ は Transportation Networks for Research⁸⁾ から引用して いる.ノード 15 を唯一起点とし、それ以外のすべて のノードを終点とする.より多くのリンクで待ち行列 が発生する状況を再現するために、各リンクのボトル ネック容量を調整する.調整されたボトルネック容量お よび与件となる各終点ノードへの総交通需要を付録 II に示す.時点間隔を $\Delta T = 1$ min とし、分析時間帯を [0,*T*] = [0,100] とする.またスケジュール費用 ψ は、 すべての終点ノードについて同一であるとし、以下の 式で与える:

$$\psi_i(s) = \begin{cases} -0.8(s-30) & \forall s \in [0,30) \\ 0.2(s-30) & \forall s \in [30,T] \end{cases} \forall i \in \mathcal{N}$$
(34)

以下では、時計時刻を表記する際にスケジュールコス トが最小となる $\tau = 30$ を '終業時刻 'と見なし, 17:00 と設定する. このとき分析時間帯は 16:30 から 18:10 までの 100 分間となる. 数値実験で用いたプログラム は Python 言語で書かれたもので、線型計画問題を解く ためのソルバーとして Gurobi Optimizer ⁹⁾ を使用して いる.

図–1: Sioux Falls ネットワーク⁸⁾

(2) 計算結果

まず,各終点ノードへの総交通需要を 0.1 倍, 1.0 倍, 2.0 倍と変化させた場合の計算結果を比較する。各条件 における均衡解への収束パターン例およびネットワー ク全体の累積出発 / 到着台数を図-2 に,最大所要時間, 渋滞発生時刻および渋滞解消時刻を表-1 にそれぞれ示 す.総交通需要の増加に伴って最大所要時間の増加お よび渋滞状況の悪化が見られたが,いずれの条件にお いても,10 回程度の繰り返し計算により 10⁻¹⁰ 未満の オーダで均衡解への収束が見られた.

次に,総交通需要を 1.0 倍に固定してより具体的な 計算結果を示す.均衡解においてフローが存在するリ ンクのみを抜き出したネットワークを図-3に示す.図 3 に示すように,待ち行列が存在する 15 本のリンクを 起点から見て北西方向,東方向,南方向の 3 種類に分 類し,各方向のリンクにおける待ち行列長 x の時間変 化を図-4に示す.またいくつかの終点ノードについて, 最小所要時間 π ,スケジュール費用 ψ ,均衡交通費用 ρ お よび集中フロー q の関係を図-5に示す.図-5では,各 終点ノードにおいて最小所要時間とスケジュール費用の 和が均衡交通費用に一致している時刻のみ集中フロー が正になっており,最適出発時刻選択条件が確かに満 たされていることがわかる.さらに,待ち行列の発生 が見られた 15 本のリンクにおける累積流入/流出曲線 を図-6に示す.なお,計算によって求められる各変数 はすべて起点出発時刻別に表現されているので,累積 流入 / 流出交通量のような時計時刻別の変数の値を得 るには適切な逆変換をする必要がある.この詳細につ いては付録 I を参照.

図-3: フローが存在するリンクのみのネットワーク

表-1: 最大所要時間, 渋滞発生時刻および渋滞解消時刻

総交通需要	最大所要時間	渋滞発生	渋滞解消
	[min]	時刻	時刻
0.1 倍	23.8	17:02	17:12
1.0 倍	28.4	16:54	17:46
2.0 倍	33.2	16:48	18:12

図-4:各方向のリンクにおける待ち行列長 x の変化

図-6:累積流入/流出曲線

(n) リンク 69

(o) リンク 70

(m) リンク 59

5. おわりに

本研究では、一起点多終点ネットワークを対象として 各リンクの待ち行列進展が point-queue モデルで表われ る経路・出発時刻同時選択型の動的利用者均衡 (DUE-SDR: DUE with simultaneous departure time and route choice) 配分モデルの解法を開発した.具体的には、まず Akamatsu⁵⁾の経路選択のみの DUE モデルを出発時刻選 択が可能な枠組へと一般化した DUE-SDR モデルを,混 合線形相補性問題 (MLCP: mixed linear complementarity problem) として定式化した ([O2M-DUE-SDR-MCP]). 次に、こうして定式化した ([O2M-DUE-SDR-MCP]). 次に、こうして定式化された MLCP と等価な二次計画問 題 [O2M-DUE-SDR-QP] を導出し、それを Frank-Wolfe 法を用いて解くことで DUE-SDR モデルの解を求める 手法を開発した.最後に、提案手法を Sioux-Falls ネッ トワークに適用し、10 回程度の繰返しで厳密な均衡解 が得られることを示した (**図-2**).

付録 | 時計時刻系への逆変換

本章では、起点出発時刻別の変数 y,w,π の値が求め られているときに、これらを時計時刻系の各変数へと 逆変換するための関係式を以下に示す.まず、起点を時 刻 s に出発した利用者のノード i への最早到着時刻 (時 計時刻) $\tau_i(s)$ を $\tau_i(s) = \pi_i(s) + s$ より求める.これを用い ると、時計時刻系の各変数の値が以下のように導ける:

• 時刻 $\tau = \tau_i(s) + c_{ij}$ の待ち行列長 $x_{ij}(\tau_i + c_{ij})$

$$x_{ij}(\tau_i(s) + c_{ij}) = w_{ij}(s)\overline{\mu}_{ij} \tag{I.1}$$

• 時刻 $\tau = \tau_i(s)$ の流入フロー $\lambda_{ij}(\tau_i(s))$

$$\lambda_{ij}(\tau_i(s)) = y_{ij}(s) \left(\frac{\mathrm{d}\tau_i(s)}{\mathrm{d}s}\right)^{-1} \tag{I.2}$$

• 時刻 $\tau = \tau_i(s) + c_{ij}$ の流出フロー $\mu_{ij}(\tau_i(s) + c_{ij})$

$$\mu_{ij}(\tau_i(s) + c_{ij}) = \lambda(\tau_i(s)) - \frac{\mathrm{d}x_{ij}(\tau_i(s) + c_{ij})}{\mathrm{d}\tau_i}$$
$$= \left\{ y_{ij}(s) - \frac{\mathrm{d}w_{ij}(s)}{\mathrm{d}s} \overline{\mu}_{ij} \right\} \left(\frac{\mathrm{d}\tau_i(s)}{\mathrm{d}s} \right)^{-1}$$
(I.3)

• 時刻 $\tau = \tau_i(s)$ までの累積流入交通量 $\hat{A}_{ij}(\tau_i(s))$

$$\hat{A}_{ij}(\tau_i(s)) = \int_{\tau_i(0)}^{\tau_i(s)} \lambda_{ij}(\tau) \,\mathrm{d}\tau$$
$$= \int_0^s y_{ij}(\sigma) \,\mathrm{d}\sigma \qquad (I.4)$$

・ 時刻 $\tau = \tau_i(s) + c_{ij}$ までの累積流出交通量 $\hat{L}_{ij}(\tau_i(s) + c_{ij})$

$$\hat{L}_{ij}(\tau_i(s) + c_{ij}) = \int_{\tau_i(0) + c_{ij}}^{\tau_i(s) + c_{ij}} \mu_{ij}(\tau) \,\mathrm{d}\tau$$
$$= \int_0^s \left\{ y_{ij}(\sigma) - \frac{\mathrm{d}w_{ij}(\sigma)}{\mathrm{d}s} \overline{\mu}_{ij} \right\} \mathrm{d}\sigma$$
(I.5)

付録Ⅱ 数値計算に使用したパラメータ

数値計算に使用した,Sioux Falls ネットワークにお ける各リンクのボトルネック容量および各終点ノード の総交通需要を**表-2**に示す.

参考文献

- Carey, M.: Nonconvexity of the dynamic traffic assignment problem, *Transportation Research Part B: Methodological*, Vol. 26, No. 2, pp. 127–133, 1992.
- Daganzo, C. F.: The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, *Transportation Research Part B: Methodological*, Vol. 28, No. 4, pp. 269–287, 1994.
- Daganzo, C. F.: The cell transmission model, part II: Network traffic, *Transportation Research Part B: Methodological*, Vol. 29, No. 2, pp. 79–93, 1995.
- Han, K., Eve, G. and Friesz, T. L.: Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation, *Networks and Spatial Economics*, 2019.
- 5) Akamatsu, T.: An Efficient Algorithm for Dynamic Traffic Equilibrium Assignment with Queues, 2001.
- Zhang, X. and Zhang, H. M.: Simultaneous Departure Time/Route Choices in Queuing Networks and a Novel Paradox, *Networks and Spatial Economics*, Vol. 10, No. 1, pp. 93–112, 2010.
- Lo, H. and Szeto, W.: A cell-based variational inequality formulation of the dynamic user optimal assignment problem, *Transportation Research Part B: Methodological*, Vol. 36, No. 5, pp. 421–443, 2002.
- Transportation Networks for Research Core Team: *Transportation Networks for Research*, 2019, Accessed 3 Sep., 2019.
- Gurobi Opitimization, L.: *Gurobi Optimizer*, 2019, Accessed 4 Sep., 2019.

(2019年10月4日受付)

(a) 各リンクのボトルネック容量			(b) 各終月	点ノードの総交通需要	
Link ID	capacity [veh/min]	Link ID	capacity [veh/min]	Node ID	OD demand [veh]
1	43.167	39	14.89808	1	100
2	39.00579	40	27.49012	2	279
3	51.17737	41	28.90517	3	279
4	9.79709	42	27.7623	4	460
5	46.24398	43	225.20003	5	505
6	33.80945	44	85.45877	6	505
7	46.24398	45	242.74589	7	594
8	41.51287	46	159.98634	8	594
9	43.14391	47	22.49107	9	730
10	11.9096	48	21.64014	10	864
11	45.74992	49	23.31161	11	730
12	12.72974	50	87.72047	12	460
13	25.72707	51	28.14969	13	594
14	12.75595	52	29.48234	14	910
15	12.72974	53	27.19384	16	820
16	12.60263	54	79.39231	17	910
17	22.94678	55	66.76071	18	685
18	68.48345	56	79.39231	19	1000
19	14.33429	57	111.66311	20	820
20	22.94678	58	36.98362	21	910
21	14.77792	59	38.35332	22	1000
22	14.76513	60	104.31781	23	820
23	36.85897	61	22.29844	24	775
24	18.61449	62	22.55387		
25	51.29217	63	22.62423		
26	69.27773	64	28.52402		
27	49.78355	65	29.48234		
28	67.26754	66	27.54001		
29	24.1695	67	73.59372		
30	24.85947	68	38.91368		
31	18.09343	69	40.09598		
32	36.85897	70	38.33333		
33	18.09343	71	21.95159		
34	17.97431	72	22.28682		
35	56.78058	73	22.63676		
36	11.9096	74	20.54367		
37	62.83804	75	19.71285		
38	75.78939	76	20.49223	-	

表-2: 数値計算に使用したネットワークデータ

11