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In order to manage the growing tourist numbers, new concepts of tourist behavior modeling are required. 

So far, many studies used statistical approaches to predict tourists’ movement, which only gives descriptive 
results but is of limited help for tourism “management”. In order to understand tourists’ behaviors and 
predict the routes they take when traveling among urban attractions, we take an analytical approach and 
model the tourist movements as a problem for tourism experience (utility) maximization.  

 We adopted a similar objective function given in most literature, where tourists evaluate and rank the 
points of interests (POIs) according to their tastes, and try to minimize their cost on traveling by planning 
an optimal route, taking into account time and other constraints.We also included following features: 1. the 
choice of destinations will be “history dependent” in that there is diminishing marginal utility gained by 
visiting additional POIs; 2. since attractions might be classified into several categories their intrinsic utilities 
are evaluated over multiple dimensions. The utility-based tourist behavior model allows us to estimate the 
effects if changes to the transport system or entrance fees are made. Our goal is to simulate tourism man-
agement strategies under various scenarios. 

 
Key Words : 1. behavior modelling, 2. utility maximization, 3. tourist preference, 

4. Tourist Trip Desgin Problem, 5. tourism demand management 
 

1. Background and Objectives 
 

City tourism is a major business across the world 
and has become an essential part of the economy. At 
the same time its steep growth is creating congestion 
inside cities. In Kyoto, Japan, for example, the num-
ber of tourists exceeded 55million in 201616). The re-
sulting crowding especially at point of interests 
(POIs) is leading to frustration among tourists. Fur-
thermore, many Kyoto residents perceive the large 
number of tourists often as negative and avoid visit-
ing the city center or Kyoto tourist sites. 

So far, many studies used statistical approaches to 
predict tourists’ movement. Popular studies include 
using mobile phone statistics to predict tourist flows 
and OD matries. Other studies are utilizing Wi-Fi 
packet sensor data to explore popular travel patterns 
of tourists. For example, Zheng et al used on-site GPS 

trajectories for movement pattern minning and pre-
dict the tourist's next location within a given attrac-
tion11). Zheng et al analyzed tourist movement pat-
terns and topological characteristics of travelers’ 
routes based on movement trajectories of photogra-
phers generated from geotagged photos on social me-
dia12). 

However, the limitations of above studies are that 
they only gives descriptive results which are of lim-
ited help for tourism “management” as they can not 
evaluate the effects of travel demand strategies. 

Therefore, to manage the growing tourist numbers 
new travel demand management concepts are re-
quired. The basis for such concepts is understanding 
and predicting the routes tourists travel inside cities. 
These will allow estimating the effects if changes to 
the transport system (or entrance fees or other type of 
regulatory measures) are made. There appears to be, 
however, very limited literature describing the travel 
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behaviour of tourists inside cities, possibly partly be-
cause choices are difficult to estimate and partly be-
cause traditional travel surveys tend to focus on resi-
dents instead of visitors. This research aims to reduce 
this gap by aiming to define a choice model that de-
scribes the tours of tourists.  

 
2. Literature on (tourist) tour modelling  

 
A "tour" defines a sequential visit of different des-

tinations. Applied to city tourism, route choice and 
decisions such as time spent at an attraction will be 
closely linked. Sometimes it is not even a particular, 
singular destination the tourist aims to reach but gen-
erally the goal is to explore a place within a given 
time (and with a given budget). Features making 
tourists’ decision-making process unique are that 
they evaluate sightseeing sites based on limited infor-
mation resources and travel according to a personal-
ized itinerary which can maximize their satisfaction8). 
Factors that influence tourist movements identified in 
the literature generally include a set of destination 
characteristics, trip characteristics and a set of tourist 
characteristics1,2). 

Operations research literature describing individ-
ual tourist behaviour through utility functions sees 
the decision of choosing a specific tour route as a pro-
cess of solving an optimization problem. In this kind 
of tour route planning problem (TRPP) or tourist tour 
design problem (TTDP), tourists evaluate and rank 
the POIs according to their tastes, and plan an optimal 
route between these, taking into account time budgets 
and other constraints. For this kind of tour planning 
which is a variant of the well-known orienteering 
problem (OP), heuristics are used for deriving an op-
timal tour, searching for results that may have higher 
utilities until the constraints are reached or travel 
costs outweigh the utility that might be gained from 
visiting any further POI3~8). 

However, applying the TRPP or TTDP requires 
first to understand the choice parameters. Further-
more, although above optimization approach for 
modelling tourists’ trip chain making process is rea-
sonable for many experienced travelers who spend 
time planning trips and have a strict budget on time 
and cost, there is also a large group of leisure travel-
ers whose behaviour will be influenced by additional 
factors such as “fatigue”. We suggest that the choice 
of destinations will be “history dependent” in that 
there is diminishing marginal utility gained by visit-
ing additional POIs over the course of the tour. In 
other words, once a few attractions have been visited, 
the likelihood of skipping attractions even if there 
would still be sufficient time will increase. 

Furthermore, the TTDP literature usually opti-
mizes a single objective function, whereas attractions 

might be classified into several dimensions. For in-
stance, a hiking area with spectacular scenery could 
have a high score in terms of natural beauty and out-
door exploration but will never be labeled as a place 
for leisure activities such as entertainment parks or 
shopping malls. Similarly, museums and galleries are 
given high scores in terms of cultural and art activi-
ties but will have relatively low values for natural 
sceneries. Not only does the destination have a range 
of intrinsic utilities in multiple dimensions, but also 
the preference of tourists varies with respect to these 
dimensions and a tourist might want to satisfy several 
of these dimensions at least to some degree over the 
course of his tour. 

Sasaki et al9) summarized sightseeing facilities in 
Kyoto, Japan into the three categories “Downtown”, 
“Shrine and Temple” and “Natural beauty”. Yuichiro 
et al10) collected eleven significant adjectives paired 
with opposite meanings for expressing the character-
istics of tourist attractions and reduced them subse-
quently into three categories using factor analysis; 
Becken et al1) used factor analysis to reduce attraction 
categories into 5 dimensions (factors).  

In our research, we follow the three-category ap-
proach and label them as “Natural and Scenery”, 
“Cultural and Art” and “Leisure and Entertainment”. 
We evaluate both intrinsic utilities of POIs and tour-
ists’ preference with respect to these three dimen-
sions. 

 
3. Tourist choice problem formulation 

 
Denote a complete and undirected graph network 

as G = (V, E), where the vertex set N is a combination 
of the POI (attraction) set Q = {v1, v2…vn }, and the 
origin and destination set S = {vn+1,vn+2,…,vn+s}. The 
edge set E = {(vi, vj): vi,vj ∈	V, i<j} represents the 
paths connecting the vertices V. To do so, we there-
fore preprocess the transport network to find the 
mode specific shortest paths between different POIs, 
origins and destinations. 

Each vertex in Q corresponds to a POI or an attrac-
tion area that has an intrinsic utility denoted as 𝑼$ =
(𝑢$,), 𝑢$,*, 𝑢$,+), where each entry has a value regard-
ing the attractiveness of the POI across the above 
named three dimensions. We suggest that these utili-
ties can be roughly estimated according to guide-
books, user ratings and popularity. Each edge is as-
sociated with a non-negative travel time 𝑡$. and cost 
𝑐$.. 

We then model the tourist movements as a problem 
for tourism experience (utility) maximization, in 
which tourists choose the destinations that are best 
tailored to their preference and an optimal order to 
visit them within time and monetary budgets. It is as-
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sumed that the preference of a tourist 𝑛 is character-
ized by a vector 𝑷2 = (𝑝2,), 𝑝2,*, 𝑝2,+), with an entry 
for each dimension regarding a traveler's taste. Fur-
ther, in line with above discussion, instead of making 
the total utility achieved by tourists additive to each 
individual destination visited, we consider interac-
tions between destination visits by introducing a di-
minishing marginal utility along with more utilities 
being achieved. 

The objective function of the traveler is thus to de-
cide an ordered combination of POIs which satisfy 
his/her interests most including consideration of the 
route costs. This objective function is formulated in 
(1): 

 
max𝑈2|𝑜, 𝑑 =

𝑢;$< + ∑ ?𝑢2$@
A + 𝑢$@$@B<

C DEFG)
HI) + 𝑢2$J

A + 𝑢$JK
C (1)

	
  

 
where we presume that origin o and destination d  

(e.g. a common entry point to the city, or a hotel) of 
the person are given; 𝑖H denotes the k’th POI visited 
and the tourist aims to maximize his utility by visiting 
m attractions before reaching his/her destination. In 
(1) 𝑢2$A  denotes the positive attraction of person n to 
visit POI i which we presume to be a function of the 
previously visited POIs. Further, 𝑢$.C  defines the neg-
ative utility of travelling from i to j. These utilities 
can be further specified as follows: 

 
a) Utility of traveling on each edge 

The utility of traveling on each edge is assumed to 
have a linear time and cost function as in (2) where 
𝜑 = 1/VOT transfers the monetary cost into time:  

 
𝑢$.C = 𝛼)𝑡$. + 𝛼*𝜑𝑐$. (2) 

 
b) Utility of visiting nodes 

The utility of visiting the k’th POI in the journey 
for person n, 𝑢2,HA , is decided by the interest of a tour-
ist in a specific POI (personalized score of the loca-
tion), which is determined by both the tourist’s pref-
erence and the intrinsic utility of that POI: 

 
𝑢2,HA = 𝛽)𝑷2C ∗ (𝑼$@ ∘ exp	(𝛽*𝑨2,H))	+	𝛽+𝑇	$@ (3) 
 
The ‘∘’ mark in (3) stands for the entrywise prod-

uct of two vectors. 𝑨2,H is a vector with 3 entries sim-
ilar to the intrinsic utility of POIs, that represents the 
accumulated utility gained from the POI visits before 
arriving at current POI 𝑖H. Parameter 𝛽* is assumed 
to be negative since more cumulated satisfaction is 
reducing the benefit to visit another place. If 𝛽*=0 
then the travel history does not have any influence on 
a person’s subsequent decision.  

 
4. Data description 

 
Table 1  Illustration of observed tourist trip chain data  

 
 

The data used for model estimation are taken from 
a survey of tourist movement in Kyoto city, con-
ducted in November 2006. The questionnaires were 
distributed in attraction areas and train terminals and 
include: 
a) socio-demographics such as age, occupation, own-
ership of vehicles, home city, etc.; 
b) tour related attributes such as travel purpose, 
schedule, travel group, impressions about Kyoto city; 
c) a trip diary of detailed trip chains which consists 
of destinations, travel time and mode choice. 

There were about 3,400 valid questionnaires re-
ceived. We note that there are also two complemen-
tary PT surveys conducted in Kansai area of Japan 
that surveyed socio-demographics and travel patterns 
of each participant as well as their detailed trip 
chains. Participants were not specified to tourists ex-
clusively but mainly included commuters and resi-
dents. Table 1 provides a glance at how observed trip 
chains are presented in the data. Note that expenses 
(food and souvenir) in JPY at attractions were also 
collected and missing values also exist in the dataset. 

 
5. Methodology  

 
(1) Overview  

Figure 1 illustrates the calibration process of the 
utility parameters that describes tourist behavior 
when making tours.  

As we mainly focus on the behavioral model, the 
intrinsic utilities of attractions and tourists’ prefer-
ence are evaluated before the calibration process and 
are taken as input. Tour related attributes such as 
origin, destination and time budget are utilized for 
setting the constraints in the optimization problem.  

A complete and undirected graph network is then 
constructed where each node stands for an attraction 
area or transit entry point to Kyoto. Mode-specific 
travel time, distance and transit fare matrices between 
any two nodes are measured by quering Google Maps 
API and are averaged from different periods through-
out a day. 
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Fig.1 Parameter calibration framework. 

 
With network database given as input, we solve the 

optimization problem and predict the most likely tour 
taken by each toursit under current parameters. Dif-
ferences between the predicted and observed paths 
are then measured and taken as a penalty, which be-
haves like a numerical gradient that guides the solu-
tion towards the optimum. Eventually a set of param-
eters is derived that best describes the tourists’ behav-
ior in the model. This model allows us to simulate 
tourism management strategies under various scenar-
ios. Following sections explain the key modules of 
the parameter calibration process. 
 
(2) Preference prediction 

 Tourists’ preference plays an important role in de-
ciding where to visit when making tours. However, it 
is neither realistic to enumerate all available attrac-
tions nor convenient for respondents to answer in the 
survey.  

Since tourists did not describe explicitly which 
type of sights they favor in the survey, we look for 
other information such as travel purposes to reflect 
travelers’ tastes in attraction types. In the survey re-
spondents were asked to choose up to three out of 17 
options for their main reasons for coming to Kyoto. 
According to these answers, dummy variables are 
created presenting presence or absence of that attrib-
ute. 

Dimension reduction is then performed to simplify 
the form of the preference vector, because as a model 
input we need to calibrate the intrinsic utility of at-
tractions of the same length as the preference vector, 
thus a form with appropriate dimension size is pref-
ered.  

 

Table 1  Choice candidates for travel purposes. 
 

Choice No. Travel Purpose 
1 shrine & temples 
2 window shopping 
3 night spots 
4 cultural events, festival 
5 leisure activities 
6 red-leave tours 
7 natural sceneries 
8 gourmet, cuisine 
9 shopping (souvenirs) 

 

 
Fig.2 Illustration of Hamming distance. 

 
We first reduced the number of choices from 17 to 

9 by merging less chosen options into semantically 
similar and frequent equivalents. The choices merged 
are shown in Table 1. This is followed by a k-means 
clustering with K equal to 3 based on Hamming dis-
tance where centroids of choices are found and dom-
inant choice patterns are extracted. In information 
theory, the Hamming distance measures the mini-
mum number of substitutions required to change one 
string into the other17). Figure 2 illustrates how the 
Hamming distance is calculated between two binary 
strings, that is, equivalent to the number of positions 
at which the corresponding bits are different. 
 

We obtain following cluster centroids: 
 
a) 1-6: red leave & temple shrines 
b) 1-6-8: red leave & temple shrines & gourmet 
c) 5: leisure activities 
 
An ideal approach is to predict the tourists’ prefer-

ences by obtaining information such as the socio de-
mographics and trip related attributes, without having 
to ask or survey each time. Each tourist will be as-
signed to the corresponding cluster based on his an-
swer to the travel purpose.  

We then estimate a multinational logistic model in 
which the socio demographics of the visitors and 
their travel-related attributes are used as explanatory 
variables, while the preference label is used as the 
categorical dependent variable.  

With significant factors from the socio-demo-
graphic data, we predict the probability of belonging 
to each of the cluster using multi-nomial logit regres-
sion. The probability of belonging to each cluster is 
taken as the weight under each preference type, 
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which add up to 1. Such a vector is used as a prefer-
ence vector for each tourist. 

Since the multi-nomial logistic regressions ensure 
that the probability of each category adds up to 1, the 
tourists’ preference vectors are naturally normalized 
to the same scale. We use them as input to the solver. 
  
(3) Evaluation of attraction utilities 

The intrinsic utility of destinations should also be 
estimated to run the optimal tour solving algorithm. 
In the survey, the destination is defined as a large area 
around one or several main sights as shown in Figure 
3, which may include multiple different types of 
POIs. 

 

 
Fig.3 Example of attraction areas in the survey. 

 
In order to calculate the utility of the attraction ar-

eas we avoid using the frequency of visits to the at-
traction as an indicator as this would lead to endoge-
neity issues as the explanatory variable would be cor-
related with the error term. Instead, we suggest that 
the intrinsic utility of attractions in the corresponding 
dimensions can be roughly estimated based on guide-
books, user ratings and popularity. In addition, with 
Google Map and OpenStreetMap Place Query API, 
we conducted POI searches in each region. Intrinsic 
utilities in the same dimensions as the preference vec-
tor are evaluated by following metrics. 
a) Red leave 

The score on the ‘red leave’ dimension is assessed 
by the average number of popular destinations in 
each area that have been rated high by various web-
sites and magazines over the past few years. 
b) Temple and shrines 

Kyoto, a city known for its temples and shrines. 
The city has the most traditional Buddhist culture in 
Japan. It is said that there are about 800 shrines and 
1,700 Buddhist temples located around Kyoto. Both 
the quantity and popularity of temple and shrines are 
evaluated when assessing the score of an attraction in 
this dimension. Specifically, we give weights to each 
POI based on number of reviews and user ratings 
parsed from Google Map Place Query.  

c) Gourmet 
We evaluate the score on gourmet dimension in 

two ways: the ease of finding a place to eat, and the 
number of high-end restaurants in the area. Number 
of ordinary restaurants, bars and pubs as well as high-
end restaurants are calculated by Google POI search. 
d) Leisure activities 

Scores in this dimension are evaluated by enumer-
ating the number of facilities associated with leisure 
activities. Specifically, the number of shops, muse-
ums and art centers are counted and normalized re-
spectively. An overall score is calculated by averag-
ing above scores upon different categories. 
 
(4) TTDP solving algorithm 

Tourist tour design problem (TTDP) is NP-hard 
and can be formulated as an integer programming 
problem. Exact solutions based on branch-and-
bound, branch-and-cut are only feasible for small-
scale graph, whereas approximation algorithms are 
either too difficult to implement or have high execu-
tion time in practice14).  

Other than exact solutions, numerous heuristic 
rules were developed for solving optimization prob-
lems like TSP, OP and their variants. In comparison 
with exact solutions, heuristics have the advantages 
of being intuitive, easy to implement, and fast in 
terms of computational effort.  

Since more than 3,000 optimal paths are to be 
solved for each set of parameters, developing a fast 
algorithm is a must. Specifically, we adopted a mod-
ified algorithm based on the OP solving heuristic by 
Chao13) that includes ‘exchange’, ‘improvement’ and 
2-opt ‘clean up’ steps to approximate the optimal so-
lution. A general framework of the heuristic is illus-
trated below in pseudo code. 
 

 
Fig.4 Heuristic in pseudo code. 

 
 
(5) Path similarity evaluation  

Let 𝑅2 denote the route among the set of possible 
routes corresponding to 𝑅2 = {𝑟 ∈ 𝑅|max𝑈2|𝑜, 𝑑}. 
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Our goal is to find the set of parameters {𝑷2, 𝜷	} that 
minimise the spatial difference between observed 
routes 𝑅b2 and estimated routes 𝑅2.  

Various kernel and distance functions as well as 
similarity coefficients are defined to compute pair-
wise similarity between sequences15). Metrics like 
longest common subsequence (LCSS) have also been 
applied in the literature to estimate the similarity of 
tourist movement sequences12). 

Since the traveler may slightly change the order of 
visit between several neighboring nodes, the similar-
ity metric needs be robust to noise. We suggest there-
fore a better way is to combine the assessment pro-
cess with geographic interpretation. In order to so we 
initially use following metric to calculate the spatial 
difference between the predicted and observed vis-
ited points: 

 
Let 𝑚d	 be the number of visited points in the pre-

dicted path and 𝑚ed be the true, observed number of 
POIs visited by person p. Further, let 𝑢C$@f@e   denotes 
the generalized cost of travel between the k-th POI i 
visited on the predicted and observed journey of per-
son p. The difference 𝐷d between two paths  are com-
puted as follows. 

 

𝐷d = h 𝑢C$@f@e

ijk(EF,EeF)

HI)

		+  

⎩
⎪⎪
⎨

⎪⎪
⎧

h 𝑢𝑇𝑖min(𝑚𝑝,𝑚e𝑝)𝑖𝑘s

𝑚e𝑝

𝑘=min(𝑚𝑝,𝑚e 𝑝)+1

if	𝑚𝑝 < 𝑚e𝑝

h 𝑢𝑇𝑖𝑘𝑖vmin(𝑚𝑝,𝑚e𝑝)

𝑚𝑝

𝑘=min(𝑚𝑝,𝑚e 𝑝)+1
if	𝑚𝑝 > 𝑚e𝑝

(4)

 

 
By accumulating the difference between the pre-

dicted and observed paths of each visitor, we derive 
the cost, or in other words, the fitness of the current 
set of parameters in describing the modeled behav-
iors of tourists. Since the problem does not have a 
closed form formulation, we use a heuristic method 
to calibrate behavioral paramters. 

 
 (6) Parameter update process 

Since the fitness (cost) of each set of parameters is 
obtained by summing up the prediction errors be-
tween observed and estimated paths of all tourists,  it 
does not appear to have a closed form formulation 
and hence no analytical gradients for the objective 
function.Thus, using an off-the-shelf solving algo-
rithm like gradient descent will not be feasible. 

 
Fig.5 parameter update process in 200 iterations. 

 
Therefore, we initially use a heuristic to solve the 

problem. Specifically, we first sample and compute 
the sample scores in the solution space at certain in-
tervals to roughly grasp what the solution space looks 
like. This step allows us to see if ‘peaks’ exist and 
hopefully the ‘optimal’ solution will be unique. We 
then used a genetic algorithm-based framework to 
update model parameters.  

Despite long computation time for a single set of 
parameters, the parallel evaluation nature of each pa-
rameter set allows us to apply multi-process pro-
gramming, which speeds up the evaluation more than 
10 times. The boost is determined by the number of 
threads the processor can provide. 

The parameter update process using a genetic al-
gorithm framework is illustrated in Figure 5. 
 
5. Results and conclusion 
 
(1) Tourist preference prediction 

Through clustering we have three choice patterns 
that are dominant among tourists’ choice set. The 
cluster centroids correspond to: 

a) 1-6: red leave & temple shrines 
b) 1-6-8: red leave & temple shrines & gourmet 
c) 5: leisure activities 
In about 3,400 valid cases, 20% of respondents be-

long to cluster a, 63% belong to cluster b, and the re-
maining 17% belong to cluster c. 

Multinomial logistic regression shows that the var-
iables that have an important influence on determin-
ing clustering include age, travel peers, where they 
come from, frequency of visits to Kyoto as well as 
travel schedule. Table 2 shows some of the factors 
that have a significant impact on clustering. 

Concretely, results indicates that when taking clus-
ter a as reference a tourist is more likely to be a mem-
ber of cluster c if he resides in Kyoto or visits Kyoto 
more frequently. This makes sense as for locals, they 
may not perceive these attractions as indispensable in 
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the sense that some well known landmarks may just 
be someplace you see every day on the way to work. 
On the other hand, some experienced travelers also 
avoid visiting the city centre during the tourist sea-
son, especially during the red leaves and cherry blos-
soms seasons which Japan is famous for. 
 
Table 2  Significant factors for clustering (details omitted 

for brevity) 
 

 
 
In addition, if a visitor is traveling with friends or 

colleagues or has a longer schedule in staying Kyoto, 
he is more likely to also want to experience "gour-
met" on this trip, whereas for individual travelers or 
families with children the probability of including 
“gourmet” in travel purpose is smaller.  
 
(2) Behavioral model estimation 

We calibrate behavioral parameters for travelers 
with different modal split respectively. For now only 
those coming to Kyoto by transit are considered. The 
best set of parameters for tourists using transit are as 
follows: 
 

𝑢$.C = −0.321𝑡$. − 0.025𝜑𝑐$. (5) 
 

𝑢2,	HA

= 5.0 ∗ 𝑷2C ∗ (𝑼$@ ∘ 𝑒𝑥𝑝( − 0.215𝑨2,H))

+ 0.270𝑇	$@																																															(6) 

We give 𝛽)  an initial value at 5.0 as reference. 
Negative coefficients on travel time and monetary 
cost represent the negative utility of travel between 
attractions, which in most cases is a fact recognized 
by everyone. There are also situations where a jour-
ney becomes a part of sightseeing and hence brings 
positive utilities, e.g. walking and exploring around 
an area. However, as we do not consider attractive-
ness along with a travel in the model, it is beyond the 
scope of this paper.  

In addition, note that 𝜑  equals to 1/VOT  which 
transfers the monetary cost into time. After convert-
ing into the same scale, it is revealed that travelers are 
far less sensitive to transit fares than time when they 
perceive the impedance on travels. Positive coeffi-
cient on dwell time at attractions also indicate that 
travelers enjoy more as they stay longer. Moreover, 
as each entry in the intrinsic utility vector of attrac-
tion has been normalized between 0 and 1, the coef-
ficient -0.215 of 𝛽* indicates that cumulated satisfac-
tion has a considerable negative effect on the benefit 
for visiting another place. 

 
6. Future work 
 

For remaining of this research we suggest a more 
flexible and noise-robust function to measure simi-
larity between path sequences.  

Moreover, we hope to develop a combined desti-
nation and duration choice model such that the dura-
tion at attractions are also predicted.  

Data used for our model calibration are from tour-
ism survey conducted by city government in 2006. 
Nevertheless,  based on the fact that newer surveys 
are not available and that it has never been analyzed 
in a utility model, we use it as a foundation for using 
newer data. In particular, we have recently obtained  
GPS tracking trajectories of tourists which we hope 
to use instead in further work. Ultimately, we hope to 
use the behavioral models to simulate tourism man-
agement strategies for a variety of scenarios. 
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