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The trial-and-error approach for congestion pricing finds the optimal toll based only on observable information (e.g.,
travel time, traffic state) without information on travelers’ personal preferences that are often unobservable in practice
(e.g., value of time, demand function). This feature makes the method practically useful by solving the well-known issue
of “information asymmetry” between the system administrator and the consumers. This paper proposes trial-and-error
schemes for the departure time choice problem (also known as the morning commute problem and Vickrey’s bottleneck
model). We theoretically show that our proposed schemes find the optimal toll in some standard departure time choice
problems. Specifically, following cases are considered: fine toll for the homogeneous α–β–γ case, fine toll for the
homogeneous case with a non-linear waiting time cost function or a non-linear schedule cost function, and coarse tolling
for the homogeneous case with elastic demand.
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1. Introduction

Congestion pricing is an effective way to alleviate traffic
congestion and improve social welfare in transportation
systems1)–3). To achieve social optimum via congestion
pricing, system administrators need to know travelers’
personal attribute and travel preference such as value
of time (VoT) and demand functions. However, such
attribute and preference are often unobservable to system
administrators, and consequently congestion pricing with
inaccurate estimates may degrade the system efficiency.
In economics, this issue is referred to as “information
asymmetry” between consumers and administrators. It
makes congestion pricing schemes difficult to implement
in practice.

To account for this challenge, several approaches have
been proposed in the literature, among which, the trial-
and-error pricing approach is most widely investigated.
In this approach, a tolling authority iteratively updates the
tolls based on currently observable traffic states4). If a
proper updating method is adopted, the tolls will converge
to the optimal tolls, and thus the social optimum will
be achieved without directly knowing personal preference
and attribute. Li5) proposed a trial-and-error pricing
scheme for static traffic in a link with an unknown

demand function, and then Yang et al.6) extended it
to general road networks. Additionally, Yang et al.7)

incorporated unknown cost functions to this framework
so that travelers’ VoT is not required to be known.
Furthermore, Ye et al.8) developed a trial-and-error pricing
scheme for static network traffic considering day-to-day
dynamics, instead of assuming route choice is always
equilibrated as in6), 7). Other approaches that tackle the
information asymmetry issue are the evolutionary game
theoretical approach in static network traffic9), self-learning
approach for high-occupancy/toll lanes management10), an
application of the tradable mobility credit scheme in a
bottleneck11), and the tradable bottleneck/network permit
schemes in dynamic traffic12), 13).

The departure time choice problem, also known as
the morning commute problem and Vickrey’s bottleneck
model, is a well-known transportation problem and has
been extensively studied in the literature2), 14)–16). The
problem is simple, but remains a valid representation of
rush-hour traffic congestion. In a typical departure time
choice setting, travelers have to choose their departure time
to travel between a single origin and a single destination,
which are connected by a single road with a bottleneck.
As the travelers desire to arrive the destination in similar
time but the road capacity is limited due to the bottleneck,
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a waiting queue will be formed at the bottleneck if there
were no management. If a proper toll is charged, the queue
can be eliminated, and thus the social optimal state can be
achieved. However, obtaining the optimal pricing scheme
requires precise knowledge on travelers’ preference, such
as VoT. Therefore, the information asymmetry issue exists
in the case of the departure time choice problem.

This study proposes trial-and-error schemes that find the
optimal toll in the departure time choice problems under the
information asymmetry. The observable information is the
queueing pattern, namely, time-varying waiting time. The
unobservable information is travelers’ personal preference,
namely, travel time cost functions, schedule cost functions,
desired arrival time, and demand function.

It is noteworthy that Vickrey made following remark, en-
titled “Trial and Error in Congestion Charge Optimization”,
in his non-technical monograph published in 199317):

In the case of queues that occur at toll bridges
and tunnels, ... these delay times can be
multiplied by an estimated average value of
delay time per vehicle, and the result used as
an initial differential toll schedule. Subsequent
adjustments can be made by raising the toll at
times of day when there is usually a substantial
queue, and lowering the toll at times of day when
the flow typically falls below capacity.

Our study can be considered as a formalization of this idea
in the context of the departure time choice problem and
extension to elastic demand cases.

The rest of this paper is organized as follows. First, the
problem statements are introduced. Then, we propose a
trial-and-error pricing scheme for the simplest case of the
departure time choice problem (i.e., homogeneous α–β–γ
model), and show that the scheme finds the optimal toll very
efficiently. Subsequently, we propose other trial-and-error
schemes for several generalized cases of the departure time
choice problems (e.g., non-linear cost functions, elastic
demand and second-best toll). Finally, achievements
and possible future works are summarized in Conclusion
section.

2. The departure time choice problem and
trial-and-error pricing scheme

(1) The departure time choice problem
The definition of the departure time choice problem in

this study is as follows. We use the standard formulation

of the problem based on the arrival time to the destination
as in, for example,18). The generalized private cost of a
traveler is defined as

c(t, t∗) = cw(w(t)) + cs(t, t
∗) + τ(t), (1)

where t denotes the arrival time at the destination, t∗

denotes the desired arrival time, cw(w) denotes the cost
function associated with waiting time w, w(t) denotes the
waiting time, cs(t, t∗) denotes the schedule cost function,
and τ(t) denotes the toll. The capacity of a bottleneck is
constant and denoted by s. The queuing discipline follows
the first-in first-out principle. The number of travelers is
denoted byN and may or may not be constant (i.e., demand
may be elastic). The travelers are homogeneous, meaning
that every travelers have the identical cw and cs. Once
τ(t) is given, the traffic quickly reaches the Wardropian
equilibrium19). Note that this means that we assume that the
day-to-day dynamics of the departure time choice problem
is stable, which, however, is being questioned recently in
the literature20)–24). However, this issue is out of scope of
this study, as it is still an open question.

(2) Trial-and-error pricing scheme
A trial-and-error pricing scheme is loosely defined as

a procedure that finds the optimal toll by an iterative
procedure that is based on the observable information. In
this case, the observable information is the waiting time
w(t), the capacity s, and the realized demand N (more
precisely, the cumulative arrival and departure curves). The
procedure can be loosely described as

Step 1 The administrator charges a time-varying toll
τ(t) based on the current observable information,
namely, w(t), s, and N .

Step 2 Some days later, traffic converges into a new
departure time choice equilibrium state that reflects
the toll. The administrator observes new w(t) and N .

Step 3 The administrator updates the toll τ(t) based on
a pre-determined rule that uses the current observable
information w(t), s, and N .

Step 4 Go back to Step 2 until w(t) converges to the
social optimal state.

In order to formulate a trial-and-error scheme, it is
necessary to design the updating method and show the
convergence to the social optimal state, under particular
underlying conditions on the departure time choice
problem.
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3. The simplest case

In this section, we show that a trial-and-error scheme
finds the optimal toll in the homogeneous α–β–γ model
very efficiently.

(1) Specification of the departure time choice problem
We assume that

• The traveler behavior is described by the homogeneous
α–β–γ model, in which the cost functions are defined
as

cw(t) = αw(t), (2)

cs(t, t
∗) =

{
β(t∗ − t) if t < t∗,

γ(t− t∗) otherwise,
(3)

where α denotes the VoT, β denotes the early arrival
penalty, and γ denotes the late arrival penalty.
Conditions α > β > 0 and γ > 0 are assumed.

• The desired arrival time of all the travelers is common.
• The number of travelers is denoted by N and is fixed.
• The road administrator knows that the traveler follows

the homogeneous α–β–γ model but do not know the
parameter values.

It is commonly known that the equilibrium in this problem
can be easily derived by using a simple technique called
“isocost curve”18), 25). The isocost curve can be defined as
y(t) = −cs(t)−τ(t). The waiting time cost at equilibrium
can be expressed as y(t)+cwhere c denotes the generalized
travel cost at equilibrium, and the waiting time itself can
be expressed as (y(t) + c)/α. For the details on the
isocost curve, see, for example, Lindsey18). The no-toll
equilibrium queueing pattern in this model is illustrated
in Figs. 1a and 1b using time-based and cost-based
isocost curves, respectively; note that in this paper we use
time-based and cost-based isocost curves depending on the
context. Figs. 1a and 1b mean that a triangular queueing
pattern is observed in no-toll equilibrium.

It is also widely known that the social optimal is realized
by charging a time-varying congestion toll that is also
triangular as shown in Fig. 1c. In the other words, the
optimal toll can be identical to the queueing time cost in
Fig. 1b. Therefore, the VoT α is required to find the social
optimal toll; however, due to the information asymmetry,
the VoT is difficult to observe.

(2) Trial-and-error pricing scheme
We propose a trial-and-error pricing scheme that finds

the optimal toll without external knowledge on VoT α. The

(a) Isocost curve (queueing time-based)

(b) Isocost curve (monetary cost-based)

(c) Optimal toll

Fig. 1: The homogeneous α–β–γ model.

scheme charges a particular trial toll first, and then find the
optimal toll based on the equilibrium pattern under the trial
toll.

As shown in Fig. 1, we know that the optimal toll has
similar shape with the no-toll queueing time: a triangle
whose vertexes are at (t, cost) = (tE , 0), (tL, 0), and
(t∗, αtmax) where tmax denotes maximum waiting time,
and α is unknown to the administrator. By leveraging this
knowledge, the optimal toll can be found by the following
procedure.

Suppose that the administrator charges a triangular trial
toll whose vertexes are at (t, cost) = (tE , 0), (tL, 0), and
(t∗, τmax) where τmax is an arbitrary positive value that
represents the maximum price of the toll, as illustrated in
Fig. 2. Since τmax is given arbitrary, this trial toll is not
likely to be optimal. It is either under-priced (τmax <

αtmax), over-priced (τmax > αtmax), or optimal (τmax =

αtmax). Although the administrator does not know which
is the case in prior, s/he can eventually know it based on the
observed new equilibrium queueing pattern as explained in
later.

Assume that the toll is under-priced. The new
equilibrium queueing pattern under an under-priced toll
can be represented as Fig. 3. The new maximum queueing
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Fig. 2: A trial toll in the simplest homogeneous case. θE =

τmax/(t
∗ − tE) and θL = τmax/(tL − t∗).

Fig. 3: Queueing pattern with an under-priced toll in the
simplest homogeneous case.

time is denoted by t̂max. Now, it is obvious that

tmax =
τmax

α
+ t̂max (4)

holds. Therefore, the value of α can be directly derived as

α =
τmax

tmax − t̂max

. (5)

Notice that tmax, t̂max, τmax are observable. Note that the
existence and uniqueness of equilibrium under this trial toll
(as well as the other trial tolls discussed in the later of this
paper) are guaranteed18).

Contrarily, assume that the toll is over-priced. In this
case, a new queueing pattern can be represented as Fig. 4.
It can be found that the traffic is not flowing around time
t∗, because the toll during the peak period is too expensive.
From this observation, the administrator can notice that
the trial toll is over-priced. The value of α in this case is
derived as

α =
tmax − t̂max

t2max

τmax (6)

from the observable information.
In summary, the administrator can derive the VoT α

regardless of whether the trial toll is under-priced or
over-priced (or incidentally optimal). As consequence,
the administrator can charge the optimal toll in the next
step. The social optimal is achieved without knowledge
on personal preference, namely, VoT, scheduling cost, and
desired arrival time. The procedure is summarized as
follows:

Step 1 Measure tE , t∗, tL from the no-toll equilibrium

Fig. 4: Queueing pattern with an over-priced toll in the
simplest homogeneous case.

waiting time. Let tmax be the current maximum
queueing time.

Step 2 Charge a trial toll shown in Fig. 2 with arbitrary
positive τmax.

Step 3 Measure the new maximum queueing time t̂max

under the trial toll. Check the following cases.

If there is one queue: The trial toll is under-priced.
Derive α by Eq. (5).

If there are two queues: The trial toll is over-
priced. Derive α by Eq. (6).

If there is no queue: The trial toll is socially
optimal. Derive α by τmax/tmax.

Step 4 Charge the social optimal toll with τmax :=

αtmax.

It is noteworthy that this process requires only one
trial. Given the definition of the trial-and-error scheme,
one trial is the minimum possible number of trials. A
trial-and-error scheme with small number of trials is more
desirable because, in actual implementation, each trial
requires a considerable length of duration in order to get
the day-to-day dynamics converged. In this sense, the
proposed scheme can be considered as one of the most
efficient trial-and-error schemes to find the optimal fine
toll in the homogeneous α–β–γ model.

4. Extensions

In this section, several extensions of the homogeneous
α–β–γ model is considered. Specifically, trial-and-error
pricing schemes for cases with distributed desired arrival
time, non-linear schedule cost function, non-linear waiting
time cost function, and second best pricing for elastic
demand, respectively, are proposed.
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Fig. 5: Non-linear waiting time cost function.

(1) Distributed desired arrival time or unknown non-
linear schedule cost function

In general, the desired arrival time may be distributed
rather than fixed at t∗, or the desired arrival time may
be non-linear. However, these features do not change our
problem substantially. It is trivial to show that a scheme
similar to that in the simplest case (i.e., charge a trial toll
whose shape is similar to the no-toll equilibrium queueing
time, and then derive VoT by comparing the maximum
queueing time before and after the toll) can derive the VoT.
The difference is that VoT may not be able to derivable if a
trial toll is over-priced; therefore, the administrator need to
set a trial toll inexpensive.

(2) Unknown non-linear waiting time cost function
Non-linear waiting time cost function with unknown

functional form is considered. In general, waiting time
cost may not be linear due to behavioral or psychological
reasons26) (e.g., people may detest too long waiting time,
meaning that the waiting time cost function may be convex
as shown in Fig. 5), and even its functional form may be
unknown. Under this condition, the scheme for the simplest
case cannot be applied because the concept of VoT no
longer exists. Nevertheless, it is possible to approximate the
optimal toll by another trial-and-error scheme as follows.

Let w(t) be the equilibrium waiting time in the no-toll
equilibrium. Suppose that the administrator charges an
under-priced trial toll, denoted by θ(t), and new equilibrium
waiting time ŵ(t) is observed. Note that if a toll is over-
priced, the administrator will observe multiple queues as
in the simplest case; therefore, the administrator can notice
that the toll is over-priced and thus select less expensive
toll in the next iteration. In the under-priced situation, the
following condition is satisfied because of the feature of the
cost-based isocost curves as shown in Fig. 6:

cw(w(t))− cw(ŵ(t)) = θ(t), ∀t ∈ [tE , tL]. (7)

(a) Equilibrium waiting time cost under a no-toll and an under-priced
toll

(b) Observable information regarding waiting
time cost function

Fig. 6: Estimation of non-linear waiting time cost function.

The values of w(t), ŵ(t), θ(t) are observable. Note that
cw(w(t)) > cw(ŵ(t)) > 0 for t ∈ (tE , tL) and w(t) >

ŵ(t) for t ∈ (tE , tL) hold because the toll is under-priced.
We can then approximate cw(w) in w ∈ [0,maxw(t)]

as a piecewise function based on Eq. (7) and observed
w(t), ŵ(t), θ(t) as follows. First, note that cw(0) = 0

holds and assume that cw(∆w)−cw(0) = δ∆w with small
∆w and δ = limt→tE+0

cw(w(t))−cw(ŵ(t))
w(t)−ŵ(t) hold. Then, the

value of cw(w) on some discrete w can be sequentially
computed by Eq. (7) and the above initial states. Finally, the
function cw can be estimated by interpolating the computed
points. Based on the estimated cw, the administrators can
charge an approximate optimal toll.

(3) Second best pricing for elastic demand
Now we consider a coarse toll (also known as step-toll)

for the case with elastic demand in the α–β–γ model with
fixed t∗ and a coarse toll. This problem setting is of
practical importance16), 27) and thus worths investigating
in the context of trial-and-error pricing. A coarse toll is
a well-known type of second best toll and is considered
as practically easy to be implemented because of its
operational simplicity compared with a fine toll. (Note
that a fine toll with elastic demand is identical to that with
fixed demand; therefore, it is obvious that the trial-and-error
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(a) Isocost curves under coarse toll

(b) Elastic demand, average travel cost, and marginal social cost

Fig. 7: Coarse toll with elastic demand.

scheme discussed in the previous sections finds the optimal
toll.)

A coarse toll is defined as

τ(t) =

{
τH if tHE ≤ t ≤ tHL

τL otherwise,
(8)

where τH and τL represent the toll in the peak hour and
the off-peak hour, respectively, and tHE and tHL represent
the beginning and the end, respectively, of the peak hour.
An example is shown in Fig. 7a along with an equilibrium
pattern. An elastic demand is defined as

N = D(p) (9)

where D(p) represents an unknown demand function with
generalized travel cost p and is assumed to be monotonically
decreasing.

According to Arnott et al.16), a coarse toll under elastic
demand is socially optimal if and only if

cA = τA, (10)

where cA represents the average travel cost (sum of
the waiting time cost and scheduling cost) among every
travelers and τA represents the average toll among every
travelers. This is a marginal cost pricing, because the
marginal social cost is identical to 2cA (see Fig. 7b). Arnott
et al.16) also showed that cA and τA under given demand
N can be expressed as

cA =
1

4

βγ

β + γ

(
3− (γ − α)β

(β + γ)(α+ β)

)
N

s
, (11)

τA =
(tHL − tHE)τH + (tL − tE − tHL + tHE)τL

tL − tE
,

(12)
and the optimal coarse toll under the optimal coarse toll
with given demand N must satisfy following conditions:

τH − τL ≡ ρ =
βγ

2(β + γ)

N

s
, (13)

tE = t∗ − γ

β + γ

N

s
+

(γ − α)ρ

(β + γ)(α+ γ)
, (14)

tHE = tE +
ρ

β
, (15)

tHL = tE +
N

s
− 2ρ

α+ γ
. (16)

A trial-and-error pricing scheme needs to find the optimal
toll by iteratively updating τH , τL, tHE , and tHL. In this
study, a scheme that consists of two phases is proposed.
The first phase is time preference derivation phase; it is
similar to the trial-and-error scheme for the fixed demand
proposed in the previous sections. The second phase is
demand adjustment phase.

In the time preference derivation phase, the travelers’
time preference, namely t∗, α, β, γ, is inferred. The
desired arrival time t∗ can be easily inferred as the peak
waiting time. The other variables are inferred by charging
a trial coarse toll similarly to the previous schemes. Let
a “step-height” of a trial coarse toll be ρ̂, travel time at
t ∈ [tHE , tHL] under the trial toll be t̂p, and travel time of
the same t in the no-toll case be tp. Note that ρ̂, t̂p, and tp

are observable. The relation among them is derived as
ρ̂

α
+ t̂p = tp. (17)

Thus, we get

α =
ρ̂

tp − t̂p
. (18)

Then, the values of β and γ can be derived from α and the
queue evolution speed; specifically, the queue evolution
speed dw(t)/dt is β/α if tE ≤ t < t∗ and is −γ/α if
t∗ < t ≤ tL as illustrated in Fig. 1a.

The additional challenge compared to the previous
schemes is that the demand is elastic with an unknown
functional form. This is solved by the demand adjustment
phase as follows. As shown in Fig. 7b, the demand function
is monotonically decreasing, the marginal cost is always
as twice as the average travel cost, and thus the social
optimal is achieved if Eq. (10) is satisfied. Suppose that the
administrator charges a trial toll with arbitrary τL with
τH = 0 (i.e., uniform toll). Since α, β, γ are known
by the previous phase, it is possible to compute cA and
τA under the current N and τL by Eqs. (11)–(16), and
thus it is possible to determine whether the current toll
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is over-priced (cA < τA) or under-priced (cA > τA).
Therefore, because of the monotonicity of the demand and
the marginal cost functions, the optimal N can be found by
the bisection method (i.e., a simple numerical method to
solve an equation) that iteratively updates τL. Specifically,
let τUP

L be the trial toll of the most recent iteration that
is under-priced, and τOP

L be the trial toll of the most
recent iteration that is under-priced. The trial toll in the
next iteration is determined as τnewL = (τUP

L + τOP
L )/2.

Then, substitute τUP
L or τOP

L with τnewL depending on
whether τnewL is under-priced or over-priced, and repeat the
procedure. Because of the monotonicity, this procedure is
guaranteed to converge to the optimal toll. This bisection
method can be directly used as a trial-and-error scheme as
in5), 6), because it does not require the knowledge on the
demand function except for the monotonicity.

The procedure of the proposed trial-and-error scheme
can be summarized as follows:

Step 1 [Time preference derivation phase] Charge
a trial coarse toll. The value of α and t∗ can
be determined from the new equilibrium pattern
(Eq. (18)). Subsequently, the values of β and γ can be
determined. Set τL = 0.

Step 2 [Demand adjustment phase]

Step 2.1 Charge a uniform toll (i.e., τL = τH ≥ 0)
with current τL. Measure the realized demand
N .

Step 2.2 From the known information, a virtual
average travel cost under the optimal coarse toll,
denoted as ĉA, and the mean of the optimal coarse
toll, denoted as τ̂A, in the current demand can be
computed (Eqs. (11)–(16)).

Step 2.3 Check ĉA ≃ τ̂A with some convergence
criteria. If it is true, go to Step 3. If it is false, use
the bisection method to update τL and go back to
Step 2.1 (essentially, increase τL if ĉA > τ̂A, or
decrease τL otherwise).

Step 3 Charge an approximate optimal coarse toll by
determining the optimal τH , tHE , and tHL by the
current τL and Eqs. (13)–(16).

A numerical example of the proposed scheme is shown
in Fig. 8. According to Fig. 8a, we can confirm that the
toll quickly converges to the social optimal state. It means
that even if the administrator terminates the trial-and-error
process with a mild convergence criteria, the social welfare
will be substantially improved. Figure 8b shows the isocost
curve in the converged state; it approximately satisfies the

(a) Trial-and-error process

(b) Isocost curve and toll in the converged state

Fig. 8: Numerical example of the coarse tolling with the
elastic demand. The model specification is as
follows. D(p) = η/p with η = 1000 (person/cost),
s = 2000 (veh/h), α = 1 (cost/h), t∗ = 0, β = 0.5

(cost/h), γ = 1.2 (cost/h).

social optimality.

5. Conclusion

This study proposes trial-and-error schemes for optimal
pricing in the departure time choice problems. The
advantage of trial-and-error schemes is that it does
not require precise information on travelers’ personal
preferences (i.e., waiting time cost function, schedule time
cost function, demand function), which are difficult to
observe in practice. Some particular departure time choice
problems are considered: the homogeneous α–β–γ model,
cases with non-linear, unknown waiting time cost function
and schedule cost function, and second best tolling in
elastic demand cases. We theoretically show that the
proposed schemes quickly find the optimal toll in these
cases. Especially, only one trial is required to find the fine
toll in the homogeneous α–β–γ model; this means that the
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proposed scheme is one of the most efficient trial-and-error
schemes for this problem.

Several further extensions are worth considering. First,
extension to heterogeneous commuter cases25) is valuable.
This is because heterogeneity is an important issue in the
departure time choice problem, while it is unobservable to
road administrators. Second, explicit consideration of day-
to-day dynamics (instead of assuming that the day-to-day
dynamics always converges) is important as Ye et al.8) did
in the static network traffic case. From a theoretical point
of view, this could be a challenging task that involves the
stability of the dynamics, which is receiving attention in the
recent literature20)–24); from an application point of view,
it enables us to develop a fast-converging pricing scheme.
This study can provide a stepping stone to these future
extensions.
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出発時刻選択問題に対するトライアンドエラー課金

瀬尾　亨・殷　亜峰

トライアンドエラー課金とは，情報の非対称性があるもとで最適課金を達成する枠組みである．すなわち，一般
に観測困難である旅行者の選好を既知とせず，現在の旅行時間のような観測容易な情報に基づき課金額を繰り返
し更新することで最適課金を実現する．本論文は，いくつかの標準的なボトルネック出発時刻選択問題に対する
トライアンドエラー課金手法について分析する．具体的には，旅行者が均質であることを前提とし，α–β–γ モ
デルに対する最適課金，旅行時間費用関数やスケジュール費用関数が未知な非線形関数である場合に対する最
適課金，需要が弾性的な α–β–γ モデルに対する次善課金のための手法を提案した．そして，一つ目の手法は一
度の試行で最適課金を導出できること，二つ目の手法は一度の試行で最適課金を近似的に導出できること，三
つ目の手法は次善課金に収束することを理論的に示した．
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