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The objective of this study is to propose a new model of mode, route, and path choice behavior of
pedestrians under the recursive logit modeling framework which follows the random utility maximization
theory. A main issue tackled in this paper is about how to handle the fact that paths for pedestrians
are essentially continuous in space and thus the path enumeration is almost impossible, making difficult
to develop a consistent measure of economic welfare for both “route” choice behavior in a network and
“path” choice behavior in a continuous space. To overcome this issue, we consider each pedestrian link as an
aggregate alternative of infinite pedestrian paths, where the link utility is defined as the expected maximum
utility of all possible pedestrian paths. Since the choice set generation problem in the discrete choice context
becomes the problem of specifying an appropriate probability density function in the continuous choice
context, we introduce the path density function which is constructed from a primitive free-flow pedestrian
behavior model in a continuous space, where geometric conditions of the link are taken into account. We
show an empirical strategy to estimate the parameters in the proposed model, and confirm the feasibility
of the proposed model through a numerical study.
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1. Introduction

Understanding pedestrian behavior is essential in

the planning of transit stations and city centers.

Among others, evaluating the impacts of the walk-

ing environment on route choice and mode choice de-

cisions for short-distance trips would particularly be

important, considering the health benefits and vitality

of the city. In modeling pedestrian behavior, the con-

ventional “shortest travel time rule” may not be dom-

inant. Instead of travel time, the walking environment

such as shade from trees would be a major influential

factor for pedestrians 1), while its evaluation is chal-

lenging technically because paths for pedestrians are

essentially continuous in space. Although the network

representation could be used as an approximation of

the actual space 2), this could oversimplify the actual

walking environment. Given such a situation, a num-

ber of pedestrian models have been proposed, includ-

ing a continuous Markovian equilibrium model 3), a

discrete choice model of speed and direction 4), a social

forces model 5), and a cellular automata microsimula-

tion model 6). These models mainly focus on move-

ments in a particular pedestrian space to create op-

timal space designs and to meet safety concerns, and

thus it is essential to have a better representation of

pedestrian behavior in a crowd, where behavioral con-

straints are induced by interaction with other individ-

uals nearby. On the other hand, these models lack a

microeconomic foundation in the sense that consumer

surplus would not be able to be derived directly from

the models, preventing the use of the models for urban

and transport project evaluations where the expected

benefits need to be estimated and compared across

different policy options. In particular, to the authors’

knowledge, there is no model that can be consistently

used to evaluate (1) the benefits obtained from trans-
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port network improvements which is measured mainly

by travel time reduction, and (2) the benefits obtained

from the improvement of walking environment such as

planting trees. This study attempts to fill in such a

gap.

The discrete choice model has been widely used for

calculating the consumer surplus from transport in-

vestments 7). Recently, Fosgerau et al. 8) further pro-

poses the recursive logit model which can model route

choice behavior in a network without route enumer-

ation, but it is still consistent with the utility max-

imization framework and thus the consumer surplus

can be directly calculated from the model 9). The ob-

jective of this study is to extend the recursive logit

model in the way that the impacts of walking envi-

ronment on pedestrian behavior in a continuous space

are taken into account in the model, while it is still

consistent with the utility maximization framework.

To achieve it, we consider a pedestrian link as an ag-

gregate alternative of infinite paths in a continuous

space, which can be seen as one type of continuous

logit 10),11),12). To operationalize the model, we uti-

lize the idea that the continuous version of choice set

generation problem is about the specification of the

probability density function. We also provide an em-

pirical framework to estimate the parameters in the

model with observed data, and show the practical ap-

plicability of the proposed model through a numerical

study. We also confirm that the proposed model is the

generalization of an existing pedestrian route choice

model which consider walking environment variables

as attributes of the link. Note that, in this paper, to

avoid the confusion, the term path will be used to in-

dicate a choice alternative within a certain link, and

the term route will be used to indicate a choice alter-

native in the network (i.e., a sequence of links will be

a route).

2. The proposed model

An example of the multi-modal network considered

in this study is shown in 図–1 . In this network, given

origin o and destination d, mode and route choices

are simultaneously represented. A sequence of nodes

{1,7,8,6} indicates a traveler chooses transit mode,

while other sequences of nodes, such as {1,2,4,8,6}
and {1,2,3,5,6}, indicate the choice of walking with

different routes.

図–1 An example of the multi-modal network for short-
distance trip (o: origin link; d: destination link)

A major difference between transit and pedestrian

links is that each pedestrian link contains multiple

paths in a continuous space with different attractive-

ness factors. For example, arcade street (図–2 ) pro-

tects pedestrians from rain and traffic accident. River-

side pedestrian path (図–3 ) with trees would pro-

tect pedestrians from sun while enjoying the scenery.

Those will bring certain utilities for pedestrians, af-

fecting their route/path choice decisions. Path utility

can vary across paths on the link. For example, paths

passing in front of shops could provide the higher util-

ity since pedestrians can enjoy window shopping, com-

pared to other paths on the same link. In a simi-

lar way, a path with more shade would provide the

higher utility during the summer time compared to

other paths.

The above mentioned benefits come largely from

public investments, while such benefits are not well

evaluated compared to other well-known benefits such

as travel time reduction. We believe that this is

mainly due to the lack of appropriate methodologies

that allow policy makers, for example, to directly com-

pare the benefits from planting trees in pedestrian

paths with the benefits from public transit travel time

reduction. This study attempts to fill in this gap by

developing a model of path, route and mode choice be-

havior under the utility maximization framework that

provides a consistent measure of the change in con-

sumer surplus across different transport investments

at different scale.

In Subsection (1), we introduce a route and mode

choice model in a network which follows the conven-

tional recursive logit model proposed by Fosgerau et

al 8). Subsection (2) introduces a path choice model

on a pedestrian link which has a continuous space.

We show that the conventional network-based pedes-
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図–2 Arcade street (Hiroshima city, Japan)

図–3 Riverside pedestrian path (Hiroshima city, Japan)

trian route choice model is a special case of the path

choice model in a continuous space. We then show

that, while the path choice model can be considered

as one type of continuous logit model, it brings a new

challenging issue that is the integration of all possible

paths on a link. To overcome this issue, Subsection

(3) introduces the concepts of path density function

and attractiveness density function. The path density

function represents the number of paths going through

a particular point on a pedestrian link. It reflects

the geometric features of the pedestrian space, e.g.,

walkers cannot go through the points where trees are

planted. The attractiveness density function gives the

attractiveness level of each point, e.g., the shaded area

made by tree will increase the attractiveness of passing

through there. Assumption involved here is that point

attractiveness is irrelevant to the trajectory of path.

Note that It could also reflect social norms under the

proposed framework. For example, left-hand side of

the path may have higher attractiveness if “keep to

the left” is considered acceptable in a society as an un-

written rule of behavior or social norm. We then show

that such density-based model specification allows for

empirical estimation of parameters. Since both route

choice behavior and path choice behavior are consis-

tently modeled under the utility maximization frame-

work, the consumer surplus can be directly calculated

through logsum as shown in Subsection (5).

(1) Route choice model in a network

We adopt the recursive logit to model route and

mode choice behavior in a multi-modal network
8),13),14). The recursive logit model is one type of dy-

namic discrete choice model where the route choice

problem is formulated as a sequence of link choices,

which follows the random utility maximization frame-

work. Suppose that an individual n is traveling from

origin o to destination d. In the recursive logit model,

at each link k, a traveler is assumed to choose a next

link a from the set of outgoing links from the current

state k, A(k). The random utility choosing link a,

ud
n(a|k), is defined as

ud
n(a|k) = ũn(a|k) + V d

n (a) (1)

where ũn(a|k) is instantaneous random utility which

is defined as vn(a|k) + µϵn(a). Here vn(a|k) is the

deterministic utility of a link a conditional on being

in state k, ϵn(a) is random component of utility (i.i.d.

extreme value type 1), and µ is scale parameter for

ϵn(a). V
d
n (a) is value function (the expected maximum

utility from a link a to destination d) which will be

obtained via Bellman equation as follows:

V d
n (k) = E

[
max

a∈A(k)

(
vn(a|k) + V d

n (a) + µϵn(a)
)]

(2)

Since ϵn(a) follows the Gumbel distri-

bution, V d
n (k) is the logsum defined as

µ ln
∑

a∈A(k) exp((vn(a|k) + V d
n (a))/µ). Note that

V d
n (d)=0 since there is no outgoing link from d. The

link choice probability corresponding to the link

utility given in eq. (1) can be written as

Pn(a|k) =
exp

(
1
µ

(
vn(a|k) + V d

n (a)
))

∑
a′∈A(k) exp

(
1
µ

(
vn(a′|k) + V d

n (a
′)
))
(3)

Since a path σn is the sequence of links, i.e., σn =

{ki}Ini=0, the path choice probability can be defined as

Pn(σn) =

In−1∏
i=0

Pn(ki+1|ki) =

∏In−1
i=0 exp

(
1
µvn(ki+1|ki)

)
exp

(
1
µV

d
n (k0)

)
(4)

where k0 is the origin link. Note that V d
n (k0) can be

efficiently derived through solving a system of linear

equations z = Mz + b, where zk = exp(V d
n (k)/µ),

3
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Mka = δ(a|k) exp(vn(a|k)/µ) where δ(a|k) is equal to
one if link k and link a are directly connected and

0 otherwise, and bk = 0 if k ̸= d and bd = 1. See

Fosgerau et al. 8) for details.

In terms of model structure, the recursive logit

model is equivalent to the Markovian assignment

model 15),16). Fosgerau et al 8) shows that the Marko-

vian model can be defined as a dynamic discrete choice

model and the parameters can be empirically esti-

mated by using structural estimation techniques 17).

Furthermore, recent studies show that a large-scale

network can also be handled under the recursive logit

modeling framework within a feasible computation

time 18),19), indicating that increasing network size

caused by the extension to the multi-modal network

would not be a problem.

(2) Path choice model in a continuous space

In order to construct the pedestrian link from a set

of paths in a manner consistent with the utility max-

imization framework, this section develops the path

choice model under the continuous logit framework.

A random utility obtained from a path r on a link a is

defined as ũ(r|a) = vr+µ′ϵr, where vr is the determin-

istic utility of path r on a link a, and ϵn(a) is random

component of utility (i.i.d. extreme value type 1) with

the scale parameter µ′. Note that we omit the nota-

tions of n and d for simplicity. Assume also that a

traveler will choose a path r from a set of all possible

paths Ra, which maximizes his/her utility. Then, the

choice probability of path r on a link a is defined as

P (r|a) =
exp( 1

µ′ vr)∫
r∈Ra

exp( 1
µ′ vr)dr

(5)

where dr indicates integration over all paths. The

exact solution of the integration may not be able to

be obtained, but approximate estimation can be made

as we will discussed in Subsection (3).

Since link is an aggregate alternative of paths, now

the instantaneous utility of the link appeared in eq.

(1) can be rewritten as

ũ(a|k) = E
[
max
r∈Ra

(vr + µ′ϵr)
]
+ µϵ(a) (6)

Depending on the specification of E
[
maxr∈Ra(vr +

µ′ϵr)
]
, the path choice model can be either determin-

istic or stochastic as shown below.

a) Deterministic path choice

When µ′ → 0, path choice becomes deterministic.

In this case, a path producing the maximum utility

will represent the utility of the link, i.e.,

ũ(a|k) = vr∗ + µϵ(a) (7)

where vr∗ is the largest systematic path utility for

r ∈ Ra. While such deterministic path choice assump-

tion is convenient since the network-based modeling

approach can be directly used, the impacts of walking

environment on pedestrian behavior may not be well

captured since the link utility depends solely on the

attributes of a particular path and the attributes of

the rest of paths do not affect the link utility.

b) Stochastic path choice

When µ′ ≫ 0, the path choice becomes stochastic.

The instantaneous utility can be defined as:

ũ(a|k) = ṽ(a|k)+µ′ ln

∫
r∈Ra

exp
(v′r
µ′

)
dr+µϵ(a) (8)

where v′r = vr − ṽ(a|k). The first term represents the

link-level attributes, and the second term reflects the

utility gained form the walking environment on link a

through v′r.

In the case that no path attribute is available, the

instantaneous utility of link a can be written as:

ũ(a|k) = ṽ(a|k) + µ′ lnMa + µϵ(a) (9)

where Ma =
∫
r∈Ra

1dr, since vr for all r will be rep-

resented by ṽ(a|k) and thus v′r = 0. Ma is a measure

of the size of aggregate alternative (i.e., link) 7).

(3) Empirical strategy

The path choice model defined in eq. (5) can be

seen as one type of continuous logit model 10),11),12).

The continuous logit model has been applied for loca-

tion choice behavior and departure time choice behav-

ior, but, to the author’s knowledge, no application has

been made for path choice behavior. The application

to path choice brings a new challenging issue, which

is analogous to the choice set generation problem in

the discrete route choice model. Concretely speaking,

the continuous version of choice set generation prob-

lem is about the specification of the probability den-

sity function (PDF), but the plausible PDF for path

choice is not easy to construct compared to that for

location choice and departure time choice (the density

estimated from the actual facility distribution can be

4
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used for location choice 10), and a uniform distribution

[density estimated from timetable] can be applied for

departure time choice for car [public transit] users 12)).

Related to this, the interval of integration corresponds

to the spatial boundary and temporal boundary for

location and departure time choices respectively and

thus the choice set can be clearly defined, but such

boundary for path choice is not clear. In modeling the

discrete route choice model, the size of the choice set is

inherently infinity when we allow cyclic paths/routes.

Similarly, the PDF for path choice would also depend

on how we assume possible pedestrian paths. For ex-

ample, if we assume that pedestrians can go round and

round the same place, the corresponding PDF can be

quite large.

Our strategy to solve this problem is similar with

the one used in the recursive logit model. In the re-

cursive logit model, as we mentioned above, the choice

generation problem is solved by using a system of lin-

ear equations which is analogous to the spatial au-

toregressive process appeared in spatial econometrics

to find the steady state 20). In a similar manner, for

the continuous case, instead of enumerating all possi-

ble paths, a stationary distribution can be used as a

PDF. We generate such a PDF from a primitive free-

flow pedestrian behavior model where only geometric

conditions are taken into account. All other factors af-

fecting pedestrian behavior (such as shade from trees

and window shopping) are reflected in the attractive-

ness density function defined below.

To introduce the PDF, we first consider each path

is a sequence of dots, i.e., r = {(xl, yl)}Ll=0, where

xl specifies the point in the direction of forward

movement, yl specifies the vertical direction from xl,

(x0, y0) represents a point at the upstream node, and

(xL, yL) represents a point at the downstream node.

A sequence of dots will be a path when L → ∞.

We assume that path utility can be decomposed into

a set of point (or dot) utilities where a point util-

ity is assumed to be independent from others, i.e.,

v′r =
∑

(xl,yl)∈r v
′(xl, yl). Given the above decompo-

sition, eq. (5) can be rewritten as

P (r|a) =
∫
x∈r

∫
y∈r

A(x, y)dydx∫
x∈Ra

∫
y∈Ra

A(x, y)F (x, y)dydx
(10)

where F (x, y) is called path density function and

A(x, y) = exp(v′(x, y)/µ′) is called attractiveness den-

sity function. The former indicates the number of

図–4 Decomposition of walking environment into attrac-
tiveness density function A(x, y) and path density
function F (x, y) [lighter color indicates higher den-
sity]

paths going through a point (x, y), while the latter in-

dicates the attractiveness at a point (x, y). 図–4 illus-

trates an example of these two density functions. The

advantage of this decomposition is that parameters in

the model can be empirically estimated when pedes-

trian path choice results are observed for example by

video recordings 4). Specifically, we first discretize the

space in eq. (10) into sufficiently small grid cells as

follows:

P (r|a) =
∑

(xl,yl)∈r A(xl, yl)∑
xl∈Ra

∑
yl∈Ra

A(xl, yl)F (xl, yl)
(11)

and then parameterize v′(xl, yl) as β
Tz(xl, yl), where

β is a vector of parameters to be estimated, and

z(xl, yl) is a vector of observed attractiveness factors

at point (xl, yl). For the path density function, we

use a stationary distribution obtained under a cer-

tain primitive free-flow pedestrian behavior rule, for

example, giving simple transition probabilities in the

2-dimensional grid space which sorely depend on the

existence of obstacles in the pedestrian space. Note

that this is the continuous version of (implicit) choice

set generation. In principle, any kind of paths can be

in the choice set, including cyclic paths. The possi-

ble specifications of path density function will be ex-

plained in details in the next section.

(4) Likelihood functions

Since the computational burden is relatively high for

estimating the recursive logit model, here we consider

the sequential model estimation process. First, we

estimate the path choice model. The corresponding

log-likelihood function for the path choice on a link a

5
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is

LLpath(β
′|r) = ln

N∏
n=1

P (r|a) =

ln

N∏
n=1

∑
(xl,yl)∈rn

exp(β′Tz(xl, yl))∑
xl∈Ra

∑
yl∈Ra

{
exp(β′Tz(xl, yl))F (xl, yl)

}
(12)

where β′ = β/µ′ for normalization. Since this log-

likelihood function is a natural extention of the log-

likelihood function of the conventional logit model, we

can use the conventional estimation procedure such

as quasi-Newton method. We denote the estimated

parameters as β̂′.

For the route choice model, we first parameter-

ize the link-level systematic utility ṽn(ki+1|ki) =

αTw(ki+1|ki), where α is a vector of parameters to

be estimated, and w(ki+1|ki) is a vector of explana-

tory variables representing link level attributes such

as average travel time. Then, the corresponding log-

likelihood function for the route choice model is

LLroute(α|σ) = ln

N∏
n=1

Pn(σn)

= ln

N∏
n=1

∏In−1
i=0 exp

(
1
µvn(ki+1|ki)

)
exp

(
1
µV

d
n (k0)

) (13)

where vn(ki+1|ki) = αTw(ki+1|ki) + ζk+1µ
′

ln
∑

x∈Rki+1

∑
y∈Rki+1

{
exp(β̂′Tz(xl, yl))F (xl, yl)

}
.

Note that ζk+1 = 1 if link k + 1 is a pedestrian rink,

0 otherwise. As shown in Fosgerau et al. 8), we can

use the nested fixed point algorithm 17) for the model

estimation.

(5) Consumer surplus

One important characteristic of the proposed model

is that we can construct a consumer surplus measure

that can be used for evaluating both path-level and

link-level transport investments. Concretely, the log-

sum can be defined as

V d(k0) = µ ln
∑
σ∈U

exp(v(σ)/µ) (14)

where U is the set of all routes from origin k0 to

destination d, and v(σ) is the systematic utility

of route σ that is sum of systematic link util-

ities on the route given by v(a|k) = αTw(a|k) +

ζk+1µ
′ ln

∑
xl∈Ra

∑
yl∈Ra

{
exp(β′Tz(xl, yl))F (xl, yl)

}
.

Thus, the logsum depends not only on link-attributes

図–5 A simulated network with link attributes

such as the average link travel time, but also on

path attributes such as planting trees. The difference

in individual’s consumer surplus ∆CS between two

situations vwo(σ) and vw(σ) can be defined as

∆CS = µ ln
∑
σ∈U

exp(vw(σ)/µ)−µ ln
∑
σ∈U

exp(vwo(σ)/µ)

(15)

Note that this is the expressed in utility termed, but

it can be directly transformed into monetary units for

example by dividing ∆CS by travel cost coefficient.

3. Numerical study

We conduct a numerical study to illustrate the be-

havior of the proposed model. Subsection (1) briefly

explain the basic settings for the numerical study.

Subsection (2) focuses on the behavior of path choice

model. We first show the empirical specifications of

path density function and attractiveness density func-

tion, and then test the parameter estimation. Subsec-

tion (3) focuses on the behavior of route choice model.

We first illustrate how the walking environment influ-

ences the route choice behavior.

(1) Basic settings

The simulated network used in the numerical study

is shown in 図–5 . For the pedestrian link attributes,

we only consider travel time, i.e., ṽ(a|k) = αtwt where

wt is travel time (min). For public transit link, we

assume ṽ(a|k) = αcwc + αtwt + αwwtf , where wc is

travel cost (yen), wtf is waiting/transfer time (min)

6
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at the transit station. The true parameter values are

assumed to be αc = −0.03, αt = −1.0, and αw =

−1.0.

For the path characteristics, we first give the width

of each pedestrian link as ww (m) shown in 図–5 . As

we can confirm from the figure, the widths of all links

are 3, except the link connecting nodes 4 and 5 where

ww = 10. The width is an important information for

the proposed model, since it implicitly determines the

size of choice (path) set on the link. Our main focus is

to illustrate how different path attributes of the link

connecting nodes 4 and 5 influences the route choice

behavior. We assume that other links do not have any

path attributes, i.e., eq. (9) is applied for the rest of

pedestrian links.

In this simulation analysis, we consider the situation

that 1,000 persons are traveling from node 1 to node 6.

we also assume that pedestrian path choice behavior

on the link connecting nodes 4 and 5 were observed

for example through video recordings.

(2) Path choice model

As we discussed in the previous section, the path

density function needs to be specified to develop a

path choice model. To derive the path density func-

tion, we introduce a primitive free-flow pedestrian

behavior model where only geometric conditions are

taken into account. We use the term primitive be-

cause all attractiveness factors in the walking envi-

ronment are not taken into account in the determina-

tion of path density function (the attractiveness fac-

tors are reflected in the path choice model through

the attractiveness density function). The basic con-

cept of the primitive model is adapted from the 2-

dimensional cellular automaton model 21), but interac-

tions among pedestrians are not considered here. Sup-

pose that a pedestrian (also called as particle in the

cellular automaton model) is currently at a location

(xl, yl) and has a preferred walking direction given by

transition probabilities as shown in 図–6 , where pf ,

pb, ph, and pr are transition probabilities of the for-

ward, backward, left-turn, and right-turn movements,

respectively. Note also that pf (xl + 1, yl) + pb(xl −
1, yl)+ph(xl, yl+1)+pr(xl, yl−1) should be equal to

one. Depending on the specification of the transition

probabilities, we can model different primitive free-

flow pedestrian behavior, resulting in different path

densities. The simplest case would be pf = 1 and 0

図–6 Pedestrian’s preferred walking direction represented
by transition probabilities

for the rest of directions. In this case, the pedestrian

directly move from the upstream node to the down-

stream node without fluctuations. We can also reflects

the existence of obstacles. For example, when a tree

is planted on (xl, yl), then the transition probabilities

to that cell can be set as zero.

The transition probabilities and cell size can flexibly

be chosen depending on research objective, and it can

be decided based on empirical observations such as ac-

tual movement in an uncrowded situation and typical

space occupied by a pedestrian 21), but, in this numer-

ical study, we arbitrarily set these values due to the

lack of such observations. Concretely, we assume that

the cell size is 1×1m2, and transition probabilities are

set as pf = 0.88, pb = 0.04, ph = 0.04, and pr = 0.04.

When an obstacle exists on either the right or left

hand side of pedestrian or backward direction, we real-

locate the transition probability to the forward direc-

tion. For example, when an obstacle exists on the right

hand side, transition probabilities will be pf = 0.92,

pb = 0.04, ph = 0.04, and pr = 0.0. Similarly, when

an obstacle exists on the forward movement direction,

reallocate the transition probability to left-turn and

right-turn movement evenly, i.e., pf = 0.0, pb = 0.04,

ph = 0.48, and pr = 0.48. Given the above mentioned

rules, we obtain a stationary distribution, which is

used as path densities of a given link. To get the path

density, we first set particles on the entrance of the

link which are uniformly distributed. Note that the

density at the initial position is given by the the pro-

portion of the average width of the link (walkable area

7
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図–7 Examples of calculated path density (x: forward
movement direction, y: traverse direction)

図–8 Examples of attractiveness density for Case 1 (z1:
trees; z2: window shopping)

size divided by the length of link) to the width of the

entrance of the link.

図–7 shows an examples of the calculated path den-

sity. Case 0 shows the path density without any ob-

stacles, and thus the distribution is almost uniform.

In Case 1, trees are planted at (xl, yl) = (i, 9) where

i = 5, 15, 25, ..., 295. Case 2 and Case 3 show the dif-

ferent planting patterns, (i, 2) and (i, 9) for Case 2 and

(i, 5) for Case 3 (i = 5, 15, 25, ..., 295). As we can con-

firm from the figure, the path density becomes larger

on the right/left hand side of the tree since pedestrians

should avoid the tree. Note that, though the model

used here is very simple, it can generate all possible

paths on the link including cyclic paths.

Examples of observed attractiveness factors are

shown in 図–8 . The left hand side of the figure indi-

cates the attractiveness generated from trees (shade)

which corresponds to Case 1 in 図–7 . The right hand

side figure demonstrates the attractiveness generated

from shops (window shopping), where we assume that

shops are on the right hand side of the street. Note

that scenic attractiveness factors may not be easy to

be prepared, since senary factors are not exactly at-

tached to the location (while attractiveness variables

representing shade and rain protection can be easily

defined in the space).

We estimate the model with 1,000 sampled paths

where the attractiveness defined as β1z1 +β2z2 where

表–1 Estimation results of the path choice model

estimate t-value

β1 (tree) 5.160 12.75

β2 (window shopping) 2.137 9.15

Initial log-likelihood -2304.71

Final log-likelihood -2237.98

Sample size (paths) 1000

z1 represents the shade by tree and z2 represents util-

ities obtained from window shopping as we shown in

図–8 . We set the true values of β1 and β2 are 5.0 and

2.0, respectively. The estimation results are shown in

表–1 . We can confirm that the estimated values are

close to the true values.

(3) Route choice model

Once we obtain the parameters of the path choice

model, we can straightforwardly use the recursive logit

model to model the route and mode choice behavior

in a multi-modal network as shown in the previous

section. To empirically estimate the parameters in

the model, mode and route choice behavior in a net-

work is need to be observed for example through GPS

trajectories. Since the estimation of recursive logit

model with empirical data can be found in literature
8),13),9), we will not demonstrate whether we can es-

timate the parameters precisely. Rather, this section

demonstrates the impacts of walking environment on

link flows.

We start from the route choice model with µ′ = 0

with no path attribute and no obstacles on pedestrian

links as a baseline. 図–9 shows the simulated link

flows, indicating that 70.4% of travelers choose pub-

lic transit. When µ′ ≫ 0, the probability of choosing

pedestrian links increase since different paths on a link

are taken into account in route choice decisions (図–

10 ). Interestingly, the flows first shift from public

transit link to the link connecting node 4 with node

8 with the increase in µ′, but the link flows then shift

to the link connecting node 4 with node 5. This is be-

cause the link connecting nodes 4 and 5 has a greater

width (10 m) and thus pedestrian flows are shifting to

this pedestrian link from other pedestrian links. Note

that this shift happens because (implicit) choice set

size are larger for that link, and not because each path

8
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図–9 The baseline results of simulated link flows under
αc = −0.03, αt = −1.0, αw = −1.0 and µ′ = 0

図–10 Simulated link flows under under αc =
−0.03, αt = −1.0 and αw = −1.0 with dif-
ferent µ′ (no path attribute, i.e., β1 = 0 and
β2 = 0)

on the link is more attractive.

図–11 illustrates the impacts of path attributes on

route choice behavior. The upper three figures show

the impacts of planting trees (z1), while the lower

three figures illustrate the impacts of window shop-

ping (z2). The distribution of z1 and z2 are given

in 図–8 . The results indicate that the impact of z2 is

rather than that of z1 because of the following two rea-

sons. First, clearly, the average value of z2 across cells

are higher than that of z1. Second, trees are obstacles

which prevent pedestrians from passing through that

area (i.e., path density becomes lower), though the

overall benefit is positive, since increase in z1 increase

the choice of the link connecting nodes 4 and 5.

By comparing 10 with 11, we can confirm that,

while µ′ mainly influences the modal share between

public transit and walk, changes in β1 and β2 change

図–11 Simulated link flows under αc = −0.03, αt =
−1.0, αw = −1.0 and µ′ = 0.2 with different im-
pacts of path attributes

pedestrian route choice behavior.

4. Conclusions

The objective of this study is to propose a new

model of mode, route, and path choice behavior of

pedestrians under the utility maximization frame-

work. While the base model is the recursive logit

model 8) representing mode and route choice behav-

ior in a network, we have introduced a path choice

model component as a lower problem where the path

choice model is utilized to construct the utility of each

pedestrian link. More specifically, the link utility is ex-

pressed as an aggregate alternative of infinite paths in

a continuous space under the logit framework, i.e., the

link utility is defined as the expected maximum utility

of all possible pedestrian paths on the link. The major

advantage of the proposed model is that, since route

choice behavior in a discrete network space and path

choice behavior in a continuous pedestrian space are

consistently modeled under the utility maximization

framework, we can compare the benefits obtained from

transport network improvements with the benefits ob-

tained from the improvements of walking environment

by using a consumer surplus (logsum) measure.

The major methodological challenge is on solving

the choice set generation problem in a continuous

space. Although there are some studies applying con-

tinuous logit model for location choice behavior and

departure time choice behavior, presumably because

of the difficulty of putting plausible assumptions on

9
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generating possible paths, no application has been

made for path choice behavior. Since the continuous

version of choice set generation problem is the speci-

fication of the probability density function (PDF), es-

tablishing a plausible PDF for path choice is essential.

We have proposed a solution to this problem where the

path density function is constructed from a primitive

free-flow pedestrian behavior model, in which the ba-

sic concept is adapted from the 2-dimensional cellular

automaton model. We have also showed an empiri-

cal strategy to estimate the parameters in the model,

and confirmed the feasibility of the proposed model

through a numerical study.

The choice probability and likelihood function of

the proposed model have closed-form expressions, and

thus it would be easy to use the model in practice.

Although GPS trajectory data for route choice mod-

eling and video recording data for path choice mod-

eling may be required for the empirical use of the

model, collecting these data becomes easier than be-

fore. Providing empirical results is an important fu-

ture task. From the theoretical viewpoint, the path

density demonstrated in this paper is an example,

there could be a better way of generating the path den-

sity function. Also, defining the attractiveness density

function is also not very easy particularly for scenic

attractiveness. Even though there are a number of re-

maining issues, we believe that the model proposed in

this paper could be a core for the integration of trans-

portation investments and other urban policies such

as the planning of transit stations and city centers.
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